تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,291 |
تعداد دریافت فایل اصل مقاله | 7,051,192 |
معرفی روشی کاربردی مبتنی بر کنترل برای سنجش شدت رفتار غیرخطی سیستم با استفاده از Gap Metric | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 77، شهریور 1403، صفحه 261-271 اصل مقاله (1 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2023.30975.2473 | ||
نویسنده | ||
مهدی احمدی* | ||
استادیار، دانشکده مهندسی برق و کامپیوتر، مجتمع آموزش عالی فنی و مهندسی اسفراین | ||
تاریخ دریافت: 27 خرداد 1402، تاریخ بازنگری: 03 آذر 1402، تاریخ پذیرش: 05 دی 1402 | ||
چکیده | ||
در این مقاله یک روش کاربردی برای سنجش رفتار غیرخطی سیستمهای دارای دینامیک غیرخطی ارائه میشود. در این روش، سیستم غیرخطی در فضای کاری خود و با استفاده از ابزار هوشمند gap metric به یک بانک از مدلهای خطی تقسیم شده و با محاسبه آستانه پایداری بیشینه، توانمندی هر یک از کنترلکنندههای محلی در پایدارسازی مجموعه مدلهای خطی مورد بررسی قرار میگیرد. سپس معیاری برای سنجش شدت رفتار غیرخطی سیستم تحت مطالعه ارائه میگردد که دارای مقادیری بین صفر تا یک است. برخلاف بسیاری از روشهای سنجش شدت رفتار غیرخطی، روش ارائه شده در این پژوهش برای سیستمهای انتگرالی و ناپایدار نیز قابل استفاده است. علاوه بر این، روش ارائه شده کفایت استفاده از تنها یک کنترلکننده خطی و یا لزوم استفاده از روش مدلهای چندگانه جهت نیل به اهداف حلقه بسته را پاسخ میدهد و از افزونگی کنترلکنندههای محلی جلوگیری مینماید. برای ارزیابی روش ارائه شده، یک سیستم غیرخطی CSTR شبیهسازی شده است که نتایج بهدست آمده نشان میدهند معیار معرفی شده برای سنجش شدت رفتار غیرخطی عملکرد مناسبی دارد. | ||
کلیدواژهها | ||
سیستم غیرخطی؛ سنجش رفتار غیرخطی؛ کنترلکننده؛ Gap metric؛ بیشینه آستانه پایداری | ||
عنوان مقاله [English] | ||
An Applicable Control-Relevant Method for Nonlinearity Assessment using Gap Metric | ||
نویسندگان [English] | ||
Mahdi Ahmadi | ||
Assistant Professor,Faculty of Electrical and Computer Engineering, Esfarayen University of Technology, North-Khorasan, Iran. | ||
چکیده [English] | ||
In this paper, an applicable control-relevant nonlinearity assessment method is proposed for nonlinear dynamic systems. In this method, nonlinear system is decomposed to a bank of linear systems using gap metric, a smart tool for measuring the distance between two linear systems. Then, the ability of each local linear model is investigated to stabilize all linear models. A criterion is proposed to measure the nonlinearity of nonlinear system based on gap metric and maximum stability margin values which bounded between 0 and 1. Unlike most of the current nonlinearity measurement, the proposed method could be used for both integrating and unstable nonlinear systems. Besides, the presented method supplies to distinguish that a single linear controller is adequate to control the nonlinear system or it is necessary to employ the multi-model based controllers design methods. Therefore, the redundancy problem could be avoided by employing the proposed method. A nonlinear Continues Stirred Reactor Tank (CSTR) process is studied that the results confirm the capability of presented nonlinearity assessment method. . | ||
کلیدواژهها [English] | ||
Nonlinear system, Nonlinearity assessment, Controller, Gap metric, Maximum stability margin | ||
مراجع | ||
[1] K. Elkhalil, and A. Zribi. "Linear controller design approach for nonlinear systems by integrating gap metric and stability margin." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 237, no. 10, (2023): 1-12. [2] J. Xavier, S.K. Patnaik, and R.C. Panda. "Nonlinear Measure for Nonlinear Dynamic Processes Using Convergence Area: Typical Case Studies." Journal of Computational and Nonlinear Dynamics 16, no. 5, (2021): 051002. [3] T. Schweickhardt, and F. Allgöwer. "Linear control of nonlinear systems based on nonlinearity measures." Journal of Process Control 17, no. 3, (2007): 273-284. [4] M. Ahmadi, and M. Haeri. "A new structured multi-model control of nonlinear systems by integrating stability margin and performance." Journal of Dynamic Systems, Measurement, and Control 139, no. 9, (2017): 091014. [5] C. Desoer, and Y.T. Wang. "Foundations of feedback theory for nonlinear dynamical systems." IEEE Transactions on Circuits and Systems 27, no. 2, (1980): 104-123. [6] S.A. Eker, and M. Nikolaou. "Linear control of nonlinear systems: Interplay between nonlinearity and feedback." AIChE journal 48, no. 9, (2002): 1957-1980. [7] M. Guay, R. Dier, J. Hahn, and P.J. McLellan. "Effect of process nonlinearity on linear quadratic regulator performance." Journal of process control 15, no. 1, (2005): 113-124. [8] K.R Harris , M. Celeste Colantonio, and A. Palazoğlu. "On the computation of a nonlinearity measure using functional expansions." Chemical engineering science 55, no. 13, (2000): 2393-2400. [9] A. Helbig, W. Marquardt, and F. Allgöwer. "Nonlinearity measures: definition, computation and applications." Journal of Process Control 10, no. 2-3, (2000): 113-123. [10] A. Alaeddini, K.A. Morgansen, and M. Mesbahi. "Augmented state feedback for improving observability of linear systems with nonlinear measurements." Systems & Control Letters 133, (2019): 104520. [11] J. Du, and Z. Tong. "An improved nonlinearity measure based on gap metric." in Proceedings of the 33rd Chinese Control Conference, pp. 1920-1923. IEEE, 2014. [12] M. Ahmadi, and M. Haeri. "An integrated best–worst decomposition approach of nonlinear systems using gap metric and stability margin." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 235, no. 4, (2021): 486-502. [13] M. Ahmadi, and M. Haeri. "A systematic decomposition approach of nonlinear systems by combining gap metric and stability margin." Transactions of the Institute of Measurement and Control 43, no. 9, (2021): 2006-2017. [14] G.T. Tan, M. Huzmezan, and K. Ezra Kwok. "Vinnicombe metric as a closed-loop nonlinearity measure." in 2003 European Control Conference (ECC), pp. 751-756. IEEE, 2003. [15] W. Tan, H.J. Marquez, T. Chen, and J. Liu. "Analysis and control of a nonlinear boiler-turbine unit." Journal of process control 15, no. 8, (2005): 883-891. [16] J. Du, and T.A. Johansen. "Control-relevant nonlinearity measure and integrated multi-model control." Journal of Process Control 57, (2017): 127-139. [17] M. Ahmadi. "Multi-Model Control of Nonlinear Systems Using an Improved Procedure for Nominal Local Models Selection." Journal of Mechanical Engineering 52, no. 2, (2022): 251-259 (in Persian). [18] A. El-Sakkary. "The gap metric: Robustness of stabilization of feedback systems." IEEE Transactions on Automatic Control 30, no. 3, (1985): 240-247. [19] K. Zhou, and J.C. Doyle. Essentials of robust control. Vol. 104. Upper Saddle River, NJ: Prentice hall, 1998. [20] J. Du, C. Song, Y. Yao, and P. Li. "Multilinear model decomposition of MIMO nonlinear systems and its implication for multilinear model-based control." Journal of Process Control 23, no. 3, (2013): 271-281. [21] J. Du, C. Song, and P. Li. "A gap metric based nonlinearity measure for chemical processes." in 2009 American Control Conference, pp. 4440-4445. IEEE, 2009. [22] M. Ahmadi, P. Rikhtehgar, and M. Haeri. "A multi-model control of nonlinear systems: A cascade decoupled design procedure based on stability and performance." Transactions of the Institute of Measurement and Control 42, no. 7, (2020): 1271-1280. [23] W. Tan, H.J. Marquez, T. Chen, and J. Liu. "Multimodel analysis and controller design for nonlinear processes." Computers & chemical engineering 28, no. 12, (2004): 2667-2675. | ||
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 119 |