تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,292 |
تعداد دریافت فایل اصل مقاله | 7,051,194 |
طراحی بهینه حلقه کرونا مقره کامپوزیتی با در نظر گرفتن اثر متقابل فازها توسط الگوریتم-های هوشمند مونت کارلو و جستجوی مختصات | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 77، شهریور 1403، صفحه 189-206 اصل مقاله (1.31 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2023.32057.2543 | ||
نویسندگان | ||
مصطفی خواجوی1؛ سجاد باقری* 2؛ اسعد شمشادی3 | ||
1دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد اراک، اراک، ایران | ||
2استادیار، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد اراک، اراک، ایران | ||
3استادیار، دانشکده مهندسی برق، دانشگاه صنعتی اراک، اراک، ایران | ||
تاریخ دریافت: 23 مهر 1402، تاریخ بازنگری: 11 آبان 1402، تاریخ پذیرش: 23 آبان 1402 | ||
چکیده | ||
امروزه در خطوط انتقال برق فشار قوی بهخصوص در مناطق آلوده و مرطوب از مقرههای کامپوزیتی استفاده میگردد. یکی از پارامترهای بسیار تأثیرگذار بر طول عمر مقرههای کامپوزیتی، کنترل توزیع شدت میدان الکتریکی روی فاصله خزشی مقره میباشد. طراحی مناسب حلقهکرونا یکی از عوامل مهم در کاهش شدت میدان الکتریکی محسوب میشود. در این مقاله، ابتدا تغییرات شدت میدان الکتریکی روی فاصله خزشی مقره کامپوزیتی 230 کیلوولت، با و بدون در نظر گرفتن اثرات حلقهکرونا، سازه برج، هادی، یراقآلات و فازهای متقابل با استفاده از روش المان محدود و به بصورت سه بعدی در نرم افزار کامسول بررسی و محاسبه شده است. سپس، تابع هدف مناسب به منظور مینیموم کردن حداکثر شدت میدان الکتریکی روی فاصله خزشی مقره کامپوزیتی لحاظ میگردد. در نهایت، از دو الگوریتم هوشمند مونت کارلو و جستجوی مختصات به منظور طراحی بهینه پارامتراهای حلقهکرونا مقره کامپوزیتی شامل قطر، ضخامت و موقعیت نصب حلقهکرونا از قسمت پتانسیل فشار قوی استفاده و با سایر روشهای غیرمبتنی بر گرادیان مقایسه میشود. نتایج بدست آمده نشان داد که طراحی و محاسبه پارامترهای بهینه حلقهکرونا با استفاده از روشهای مونت کارلو و جستجوی مختصات باعث کاهش حداکثر شدت میدان الکتریکی روی فاصله خزشی مقره کامپوزیتی تا 78% نسبت به حالت بدون حلقهکرونا میشود که از نوآوری اصلی این مقاله با سایر تحقیقات منتشر شده میباشد. | ||
کلیدواژهها | ||
مقره کامپوزیتی؛ حلقهکرونا؛ روش اجزای محدود؛ فازهای متقابل؛ مونت کارلو؛ جستجوی مختصات | ||
عنوان مقاله [English] | ||
Optimum Design of Corona Ring of Composite Insulators Considering the Effect of Mutual Phases by Monte Carlo and Coordinate Search Intelligente Algorithms | ||
نویسندگان [English] | ||
Mostafa Khajavi1؛ Sajad Bagheri2؛ Asaad Shemshadi3 | ||
1PhD Student, Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran | ||
2Assistant professor, Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran | ||
3Assistant professor, Electrical Engineering Department, Arak University of Technology, Arak, Iran | ||
چکیده [English] | ||
Today, composite insulators are used in high-voltage power transmission lines, especially in polluted and humid areas. One of the parameters affecting the aging of composite insulators is the control of the Electric Field Intensity (EFI) distribution on the creepage distance of the insulator. Designing corona ring is considered as one of the important factors in reducing EFI. In this paper, the changes in the EFI on the creepage distance of the 230 kV composite insulator have been investigated and calculated with and without considering the effects of the corona ring, tower structure, conductor, hardware, and mutual phases using the Finite Element Method (FEM) and in three dimensions in software COMSOL. Then, the appropriate objective function was defined to minimize the maximum EFI on the creepage distance of the composite insulator. Finally, Monte Carlo and coordinate search algorithms were used for the optimum design of the corona ring parameters of the composite insulator, including the diameter, thickness, and Installation position of the corona ring in the high voltage potential part, and compared with other non-gradient-based methods. The simulation results showed that the design and calculation of the optimal parameters of the corona ring using Monte Carlo and coordinate search algorithms reduced the maximum EFI on the creepage distance of the composite insulator by 78% compared to the case without the corona ring, which is the innovation of this paper to other published works. . | ||
کلیدواژهها [English] | ||
Composite insulator, Corona ring, Fem, Mutual phases, Monte carlo, Coordinate search | ||
مراجع | ||
[1] H. jin, Z. lv, Z. Yuan, Member, Z. Wei, C. Wang, C. Wang, Y. Tu, F. Li, T. Chen, P. Xiao. “Micro-cracks Identification and Characterization on the Sheds of Composite Insulators by Fractal Dimension”. IEEE Transactions on Smart Grid 12, no. 2 (2021): 1821-1824. [2] A. J. Phillips, A. J. Maxwell, C. S. Engelbrecht, and I. Gutman. ‘‘Electric field limits for the design of grading rings for composite line insulators’’. IEEE Trans. Power Delivery 30, no. 3 (2015): 1110–1118. [3] M. R. Ahmadi-Veshki, M. Mirzaie, and R. Sobhani. ‘‘Reliability assessment of aged SiR insulators under humidity and pollution conditions’’. Int. J. Electr. Power Energy Syst 117 (2020). [4] B. Zelalem, M. Mamo. ‘‘Assessment of External Insulation Problems Related to Pollution and Climatic Conditions in Ethiopia’’. IEEE Electrical. Insulation Magazine 36, no. 4 (2020): 36-46. [5] W.-D. Li, X.-R. Li, B.-H. Guo, C. Wang, Z. Liu, and G.-J. Zhang. ‘‘Topology optimization of truncated cone insulator with graded permittivity using variable density method’’. IEEE Trans. Dielectr. Electr. Insul 26, no. 1 (2019): 1–9. [6] S. Mohammadnabi, Kh. Rahmani. “Influence of humidity and contamination on the leakage current of 230-Kv composite insulator”. Electric Power Systems Research 194 (2021). [7] Y. Zhang, Z. Zhang, X. Jiang, T. Liang, and S. Yang. ‘‘Aging process evaluation method of silicone rubber in composite insulators in natural environmental experiment station’’. IEEE Access 7, (2019): 169734–169744. [8] Y. Zhang, Z. Zhang, X. Jiang, T. Liang, and S. Yang. ‘‘Aging process evaluation method of silicone rubber in composite insulators in natural environmental experiment station’’. IEEE Access 7, (2019): 169734–169744. [9] L. S. Maraaba, K. Y. Al Soufi, L. M. Alhems, and M. A. Hassan. ‘‘Performance Evaluation of 230 kV Polymer [10] Y. Gao, X. Liang, Y. Lu, J. Wang, W. Bao, S. Li, C. Wu, and Z. Zuo. ‘‘Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part I: Fracture Morphology Characteristics’’. IEEE Electrical Insulation Magazine 37, no. 3 (2021): 7-17. [11] J. Du, Z. Peng, J. Li, S. Zhang, N. Li, and C. Fan. ‘‘Electric field calculation and grading ring optimization for 1000 kV AC post porcelain insulator’’. IEEE Int. Conf. Solid Dielectr. (ICSD), Bologna, Italy, (2013): 198–201. [12] B. M’hamdi, M. Teguar, and A. Mekhaldi. ‘‘Optimal design of corona ring on HV composite insulator using PSO approach with dynamic population size’’. IEEE Trans. Dielectr. Electr. Insul 23, no. 2 (2016): 1048–1057. [13] N. Alti, A. Bayadi, and K. Belhouchet. ‘‘Grading ring parameters optimization for 220 kV meta-oxide arrester using 3D-FEM method and bat algorithm’’. IET Sci., Meas. Technol 15, no. 1 (2021): 14–24. [14] K. Aramugam, H. A. Illias, and Y. C. Ching. ‘‘Optimization of corona ring design for composite insulator strings’’. Int. J. Comput. Math. Electr. Electron. Eng 38, no. 1 (2019): 232–246. [15] Seyyed Meysam. Seyyed Barzegar, Alireza Sadeghi, Masume Khodsuz. ‘‘Optimization of Corona Ring Parameters for Electric Field Adjustment in Composite Insulator Using Derivative Free Solvers’’. Computational Intelligence in Electrical Engineering 12, no. 1 (2021): 78-86. (inPersian) [16] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, U.K.: MIT Press, Jan. 1998. [17] M. Dorigo, V. Maniezzo, and A. Colorni. ‘‘Ant system: Optimization by a colony of cooperating agents’’. IEEE Trans. Syst., Man, Cybern., B (Cybernetics) 26, no. 1 (1996): 29–41. [18] J. Kennedy and R. Eberhart. ‘‘Particle swarm optimization’’. in Proc. Int. Conf. Neural Netw., Dec. (1995): 1942–1948. [19] X. S. Yang, Cuckoo Search and Firefly Algorithm: Theory and Applications (Studies in Computational Intelligence). Cham, Switzerland: Springer (2014). [20] S. Mirjalili and A. Lewis. ‘‘The whale optimization algorithm’’. Adv. Eng. Software 95, (2016): 51–67. [21] S. Mirjalili, S. M. Mirjalili, and A. Lewis. ‘‘Grey wolf optimizer’’. Adv. Eng. Software 69, (2014): 46–61. [22] S. Mirjalili. ‘‘The ant lion optimizer’’. Adv. Eng. Software 83, (2015): 80–98. [23] M. D. Li, H. Zhao, X. W. Weng, and T. Han. ‘‘A novel nature-inspired algorithm for optimization: Virus colony search’’. Adv. Eng. Software 92, (2016): 65–88. [24] A. Kaveh and N. Farhoudi. ‘‘A new optimization method: Dolphin echolocation’’. Adv. Eng. Software 59, (2013): 53–70. [25] Rios LM, Sahinidis NV. “Derivative-free optimization: a review of algorithms and comparison of software implementations”. Journal of Global Optimization 56, no. 3 (2013): 1247-93. [26] M. Khajavi, S. Bagheri, A. Shemshadi. “Optimal Design of Corona Ring in Composite Insulator Considering the Effects of Tower Structure, Conductor, Hardware and Mutual Phases”. Electric Power Syst. Res 223, (2023): 1-12. [27] B. M’ham, Y. Benmahamed, M. Teguar, I. B. M. Taha, and S. S. M. Ghoneim. ‘‘Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design’’. IEEE Access 10, (2022): 27579–27590. [28] J. A. Diaz-Acevedo, A. Escobar, and L. F. Grisales-Noreña. ‘‘Optimization of corona ring for 230 kV polymeric insulator based on finite element method and PSO algorithm’’. Electric Power Syst. Res 201, (2021). [29] J. Ma, L. Ma, X. Wang, Z. Qi, and Z. Sun. ‘‘Optimization for Grading Rings of High-Speed Train Roof Post Insulator’’. IEEE Access 9, (2021): 159784–159795. [30] M. Bouhaouche, A. Mekhaldi and M. Teguar. ‘‘Improvement of Electric Field Distribution by Integrating Composite Insulators in a 400 kV AC Double Circuit Line in Algeria’’. IEEE Transactions on Dielectrics and Electrical Insulation 24, no. 6 (2017): 3549-3558. [31] M. Ghassemi and M. Farzaneh. “Effects of Tower, Phase Conductors and Shield Wires on the Electrical Field around a Tower Window during Liveline Work”. IEEE Trans. Dielectr. Electr. Insu 22, no. 2 (2015): 3413-3420. [32] S. Hajiaghasi, Z. Rafiee, A. Salemnia and T. Soleymani Aghdam. “A Three-Dimensional Analysis of Silicone Rubber Insulators Under Different Environmental Conditions Considering the Corona Rings Effect”. Iranian Journal of Electrical and Electronic Engineering 15, no. 3 (2019): 375-385. [33] M. R. Nayak, G. Radhika, B. Devulal, P. D. Reddy, G. Suresh. ‘‘Optimization of high voltage electrodes for 765 kv bus post insulators’’. Sustainable Energy Technologies and Assessments 47, 101529 (2021). [34] E. Akbari, M. Mirzaie, M. B. Asadpoor and A. Rahimnejad. “Effects of Disc Insulator Type and Corona Ring on Electric Field and Voltage Distribution over 230-kV Insulator String by Numerical Method”. Iranian J. Electr. Electron. Eng 9, (2013): 58–66. [35] D. Cruz Domínguez, F. P. Espino-Cortés and P. Gómez. “Optimized Design of Electric Field Grading Systems in 115 kV Non-Ceramic Insulators”. IEEE Trans. Dielectr. Electr. Insul 20, no. 1 (2013): 63 - 70. [36] D. Nie, H. Zhang, Z. Chen, X. Shen and Z. Du. "Optimization design of grading ring and electrical field analysis of 800 kV UHVDC Wall bushing". IEEE Trans. Dielectr. Electr. Insul 20, no. 4 (2013): 1361 - 1368. [37] M. Bouhaouche, A. Mekhaldi and M. Teguar. ‘‘Composite Insulators in a 400 kV AC Line in Algeria for Improving Electric Field Distribution’’. IEEE 3rd CISTEM’18 - Algiers, Algeria, October 29-31 (2018). [38] D. Azizi, A. Gholami, A. Siadatan. “Corona Ring Optimization for Different Case of Polymer Insulators Based on its Size and Distance”. Journal of Artificial Intelligence in Electrical Engineering 1, no. 2 (2012): 1-7. [39] H. Terrab, A. Kara. “Parameters design optimization of 230 kV corona ring based on electric field analysis and response surface methodology”. Electric Power Systems Research 163, no. 5187 (2017): 782-788. [40] Cook, R.D., Malkus, D.S., Plesha, M.E., et al.: ‘Concepts and applications of finite element analysis’ (John Wiley & Sons, USA (1989). [41] General Technical Specification and Execution Procedures for Transmission and Subtransmission Networks Substation Insulators, Ministry of Niroo, Tawanir Company 2, no. 429 (2008): 1-98. (inPersian) [42] A.J. Phillips, J. Kuffel, A. Baker, J. Burnham, A. Carreira, E. Cherney, W. Chisholm, M. Farzaneh, R. Gemignani, A. Gillespie, T. Grisham, R. Hill, T. Saha, B. Vancia, and J. Yu. “Electric Fields on AC Composite Transmission Line Insulators”. IEEE Transactions on Power Delivery 23, no. 2 (2008): 823 – 830. [43] Metropolis N. and Ulam S. “The Monte Carlo Method”. J. Am. Stat. Assoc., 44, (1949): 335-341. [44] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., and Teller A.H. “Equation of State Calculation by Fast Computing Machines”. J. Chem. Phys 21, (1953): 1087-1092. [45] Majid. Ghiass. “An Introduction to the Monte Carlo Simulation Methods”. Polymerization 4, no.1 (2014): 67-77. (inPersian) [46] Kroese D.P. and Taimre T., Handbook of Monte Carlo Methods, John Wiley & Sons, New Jersey (2011). [47] M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. “Discrete Optimization Via Simulation Using Coordinate Search”. Proceedings of the 2005 Winter Simulation Conference. [48] E. Asenjo S, N. Morales O, A. Valdenegro E. “Solution of low frequency complex fields in polluted insulators by means of the finite element method”. IEEE Transactions on Dielectrics and Electrical Insulation 4, (1997): 10-16. | ||
آمار تعداد مشاهده مقاله: 171 تعداد دریافت فایل اصل مقاله: 151 |