تعداد نشریات | 21 |
تعداد شمارهها | 600 |
تعداد مقالات | 8,888 |
تعداد مشاهده مقاله | 66,830,528 |
تعداد دریافت فایل اصل مقاله | 7,413,487 |
A Semi-Analytical Nonlinear Approach for Size-Dependent Analysis of Longitudinal Vibration in Terms of Axially Functionally Graded Nanorods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanics of Advanced Composite Structures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
دوره 11، شماره 2 - شماره پیاپی 23، بهمن 2024، صفحه 453-466 اصل مقاله (1.96 M) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نوع مقاله: Research Article | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شناسه دیجیتال (DOI): 10.22075/macs.2024.31981.1565 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نویسنده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reza Nazemnezhad* | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
School of Engineering, Damghan University, Damghan, Iran | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
تاریخ دریافت: 27 مهر 1402، تاریخ بازنگری: 28 دی 1402، تاریخ پذیرش: 25 اسفند 1402 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چکیده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this paper, the size dependency of the nonlinear free longitudinal vibration of axially functionally graded (AFG) nanorods is studied using the nonlocal elasticity theory. A power-law distribution is considered for the variations of the nanorod material properties through its length. The nonlinear equation of motion including the von-Karman geometric nonlinearity is derived using Hamilton’s principle. Then, a solution for the linear equation of motion is obtained using the harmonic differential quadrature method, and mode shapes and natural frequencies are extracted. In the next step, the nonlinear natural frequencies are calculated by solving the nonlinear equation of motion using the multiple scales method. Two types of boundary conditions are considered, i.e. fixed-fixed and fixed-free. The presented results include effects of various parameters like nanorod length and diameter, amplitude of vibration, small scale parameter, and frequency number, on the natural frequencies. In addition, a comparative study is conducted to evaluate the effects of the type of linear mode shape on the nonlinear natural frequencies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
کلیدواژهها | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nonlinear longitudinal vibration؛ Nanorod؛ Functionally graded materials؛ Nonlocal elasticity theory | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
اصل مقاله | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Semi-Analytical Nonlinear Approach for Size-Dependent Analysis of Longitudinal Vibration in Terms of Axially Functionally Graded NanorodsSchool of Engineering, Damghan University, Damghan, Iran
1. IntroductionThe experimental and theoretical studies on the various behaviors of nano-sized structures have shown that they have superior properties in comparison with the structures at the macro-scale. These superior properties can be enhanced by using functionally graded materials (FGM) for nano-sized structures. FGMs have been used in the nano-technology field to attain the desired efficiency [1-4]. Since the behaviors of nano-sized FGM structures are different from those made of homogeneous materials, it is incumbent to be intimate with the behaviors of FGM nano-structures for NEMS/MEMS fabrication. One of the nanoscale elements that attracted the attention of researchers is the nano-beam. There are many works regarding the analysis of its various mechanical behaviors, buckling [5, 6], post-buckling [7, 8], bending [9, 10], stability [11, 12], free and forced axial vibration [13, 14], free and forced torsional vibration [15, 16], free and forced transverse vibration [17-20], and wave propagation [21, 22]. Among the studies, the axial behavior of nanobeams (nanorods) has more recently been investigated. These investigations have been done based on three types of size-dependent theories, surface elasticity theory, strain gradient theory, and nonlocal elasticity theory. Free vibration, wave propagation, and instability of nanorods/nanotubes are investigated using the nonlocal elasticity theory. In these researches effects of various factors like elastic medium [23-27], magnetic fields [27-30], the shape of nanorod cross section (uniform [31, 32], non-uniform [33, 34], tapered [35, 36], cone-like [37]), crack [25, 38, 39], discontinuity [40], type of rod theory [26, 41-45], number of coupled nanorods [13, 30, 46-49], number of nanotube walls [23, 50-52], and type of nanorod material properties [53-56] have been considered. The other studies in the field of analysis of longitudinal behavior of nanorods/nanotubes are done based on the surface elasticity and strain gradient theories. Free vibration of homogeneous [57, 58], axially functionally graded [59-61], viscoelastic [62, 63], and embedded nanorods [64] are analyzed using the strain gradient theory. Finally using the surface elasticity theory, Nazemnezhad and Shokrollahi have considered free longitudinal oscillation of FGM nano-sized rods [65]. All of the mentioned works have only analyzed the linear axial behavior of nanorods/nanotubes based on different theories. There are only a few works studying the nonlinear axial vibration of nanotubes/nanorods. Nazemnezhad et al. [66] studied the nonlinear longitudinal oscillation and internal resonances of nanoscale rods incorporating the effects of the surface energy parameters. In another work, the CNTs had been modeled as a homogeneous nanorod, and their nonlinear free axial vibration was investigated [67]. Fatahi-Vajari and Azimzadeh [68] considered the nonlinear axial vibration of single-walled carbon nanotubes based on the Homotopy perturbation method. In this research, the nonlinear governing equation of motion was derived using doublet mechanics. The nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes has also been analyzed [69]. In this study, the Galerkin method and homotopy perturbation method were used. In another different work, the internal resonances of nanorods were studied based on the nonlocal elasticity theory [70]. In this work, Nazemnezhad and Zare implemented the multi-mode Galerkin method to convert the partial differential equation to the ordinary differential type. Jamali Shakhlavi et al. [71] had studied similar research on internal resonances of Rayleigh nanorods. Finally, Jamali Shakhlavi et al. [72] considered the effects of thermal and magnetic fields and elastic medium on the nonlinear axial vibration of nanorods. The nonlocal elasticity was used and the von Kármán geometric nonlinearity was taken into account. As mentioned in the first paragraph of this section, using functionally graded materials enhances the mechanical properties of structures. In addition, the literature survey showed that there is a lack of investigation of the nonlinear axial vibration of nanotubes/nanorods. The lack is what the effect of material on the nonlinear axial behavior of nanotubes/nanorods is. Therefore, this study presents an investigation of the nonlinear axial behavior of nanorods/nanotubes when they are made of FGMs. To this end, a comprehensive model is proposed to investigate the nonlocal parameter effect on the large amplitude oscillation of nano-size axially functionally graded (AFG) rods with von Kármán type nonlinearity. In this regard, the equation of motion and corresponding boundary conditions are obtained. Then, linear mode shapes and natural frequencies are extracted using the harmonic differential quadrature method. In the next step, using the multiple scales method, the nonlinear governing equation of motion is solved. Finally, the nonlocal parameter effects on the frequencies of AFG nanorods are investigated for various end conditions, nanorod lengths, nanorod diameter, and amplitude ratios. 2. Problem Formulation2.1. Governing Equation of Motion and Corresponding Boundary ConditionsIn order to derive the nonlinear governing equation of motion and corresponding boundary conditions of AFG nano-size rods, an AFG nano-size rod with length L (0 ≤ x ≤ L), cross-sectional area A, and diameter D are desired in XYZ coordinates as shown in Figure 1.
Two different materials at the left and right ends constitute the AFG nano-size rod. The Poisson’s ratio is assumed to be constant but the shear modulus G(x), bulk elastic modulus E(x), and mass density ρ(x) of the AFG nanorod vary in the longitudinal direction according to the power low distribution as follow [73, 74]:
In Eq. 1, m is the gradient index and shows the profile of the mechanical properties of the AFG nano-size rod across its length, and the superscripts R and L imply the right (x=L) and left (x=0) ends of the AFG nanorod, respectively. In Figure 2 variations of the mass density and the Young’s modulus of elasticity across the AFG nanorod length are plotted for various values of the gradient index. Based on the rod theory, the displacement field at any point of the AFG nano-size rod is given below:
where t is the time, and , and are the displacement components along x, y, and z directions, respectively. To obtain the strain(s) in the AFG nanorod, the von-kármán strain-displacement relation with the nonlinear terms is used
According to Eqs. -(3), the non-zero strain in the cross-section of the AFG nanorod is obtained as
From Hooke’s law, the stress induced in the cross-section of the AFG nanorod is also obtained as
It is now possible to derive the governing equation of motion and the corresponding boundary conditions using Hamilton’s principle given as Eq. (6)
where T and U are the kinetic and potential energies of the AFG nano-size rod, respectively, and are given as
Now substituting Eqs. , (4)-(5) into Eqs. (7)-(8) results in
where is the local force resultant and is described as
Equations (9) and (10) are the local governing equations of motion and corresponding boundary conditions, respectively. In order to consider the nonlocal parameter effect on the governing equation of motion of the AFG nano-size rod, the nonlocal elasticity theory [75] is used. To this end, Eq. (9) can be stated in the nonlocal form as
where subscript nl denotes the nonlocal, and is the force resultant in nonlocal form or it is the nonlocal force resultant. According to the nonlocal elasticity theory, the can be obtained from Eq. (11) as follows
In Eq. (13), is the one-dimensional Laplacian operator. Now, is obtained from Eq. (13) as [70]
By obtaining the nonlocal force resultant, , the nonlocal governing equation of motion of the AFG nanorod can be given in terms of displacement by substituting Eq. (14) into Eq. (12) as
Eq. (15) can be simplified as
Eq. (16) can be expanded and rewritten as bellow
It is worth noting that by considering Eqs. (10) and (14), the local and nonlocal boundary conditions become the same and are given by
2.2. Free Vibration Analysis2.2.1. Linear Free Vibration AnalysisIgnoring the nonlinear components in Eqs. (17) and (18) make it possible to analyze the nonlocal linear free longitudinal vibration of AFG nano-size rods. The linear equations are as follows
Next, it is assumed that the AFG nano-size rod has a harmonic longitudinal displacement as
where is the imaginary unit, and is the nonlocal natural axial frequency. By substituting Eq. (21) into Eqs. (19) and (20), the governing equation of motion and the boundary conditions in terms of the displacement are obtained as
Since the coefficients of Eq. (22) are dependent on x, it is not possible to solve it analytically. To solve Eq. (22) and obtain the natural frequencies and corresponding mode shapes of AFG nanorods, the harmonic differential quadrature method (HDQM) [76], an accurate and useful method for analysis of structural components, is utilized in this study. Consider the domain of structure as which is discretized by N points along
in which is the weighting coefficient in conjunction to the jth order derivative of , at the discrete point . Now, applying Eq. (24) to Eqs. (22)-(23) results in the discretized form of the governing equation and boundary conditions as follows
Arranging the discretized form of Eq. (25) in matrix form, considering the discretized forms of Eq. (26), and separating the domain ( ) and boundary ( ) degrees of freedom (DOF) lead to the following assembled matrix
where
The nonlocal linear longitudinal frequencies, and corresponding mode shapes, can be obtained from Eq. (27) after doing some mathematical simplification as
2.2.2. Nonlinear Free Vibration Analysis Using the Method of Multiple ScalesFor nonlinear free vibration analysis of nonlocal AFG nanorods, Galerkin’s method is used to convert Eq. (17) to an ordinary differential equation. To this end, the longitudinal displacement of the nth mode of the AFG nanorod can be considered as
where U(x) is the nonlocal normalized linear mode shape which can be obtained from Eqs. (27)-(30) and T(t) is a time dependent function to be determined. Substituting Eq. (31) into Eq. (17) results in the following ordinary differential equation
Then, multiplying Eq. (32) by and integrating from x=0 to x=L results in
where
Eq. (33) needs two initial conditions as follows
where Tmax is a maximum amplitude corresponding to the time-dependent function T(t). The method of multiple scales is implemented to solve Eq. (33). Before that, the following non-dimensional quantities are introduced
By substituting Eq. (37) into Eqs. (33), (35) and (36), the non-dimensional second order ordinary differential equation and initial conditions are obtained as
in which and The method of multiple scales considering a second-order uniform expansion of the solution of Eq. (38) is desired as
where ε is a small parameter measuring the amplitude of oscillation. In addition, we consider a fast time scale, q0=t, denoting the main oscillatory behavior, and slow time scales implying the amplitude and phase modulation. Since the form of Eq. (38) is the same as the one obtained for nonlinear free transverse vibration of nanobeams [20], the procedure of extracting the nonlocal natural frequency equation of AFG nanorods is not presented here. If we follow the procedure presented in Ref. [20], the nonlocal natural frequency equation of AFG nanorods can be given as
where is the nonlocal nonlinear natural frequency of the AFG nanorod, and the subscript and superscript nl denotes the nonlinear and nonlocal, respectively. 3. Results and DiscussionBefore the presentation of results, it is worth mentioning that for obtaining the nonlinear natural frequencies of AFG nanorods (Eq. (42)), the coefficients defined in Eq. (43) should be calculated. One of the parameters used in the coefficients is the linear normalized mode shapes (Eqs. (28) and (29)) which are obtained in discretized form. Therefore, we do a curve-fitting to obtain a function for each linear mode shape. This makes it possible to do mathematical operations on the functions to obtain nonlinear natural frequencies. In Fig. 3, linear mode shapes of AFG nano-size rods for various values of the gradient index are plotted for fixed-fixed (fi-fi) and fixed-free (fi-fr) end conditions. 3.1. Comparison StudyIn this section, a comparison study is conducted to check the reliability of the present formulation and the analytical solution, and some numerical results are provided for the nonlinear vibration properties of AFG nano-size rods based on the nonlocal elasticity theory. Table 1 gives a comparison between the natural frequencies of a fi-fi and a fi-fr boundary conditions presented by this work with those obtained by Nazemnezhad and Zare [70] for a homogeneous nanoscale rod. Both researchers have used the method of multiple scales to obtain the natural frequencies. In the present study, an AFG nanorod is investigated while in Ref [70] a homogeneous one is desired. Table 1 shows a good agreement in results. 3.2. Benchmark Results The benchmark results presented here are obtained for nanorods with the mechanical properties given in Table 2. We first examine the variations of linear and nonlinear nonlocal frequencies versus AFG nanorod diameters. In this regard, the length of the AFG nanorod is equal to 10 (nm) and the corresponding diameter changes are equal to 1-2 (nm) with a step of 0.25. Since the change in diameter is directly related to the thickness of the AFG nanorod, we have tried to select its values so that the aspect ratio of the AFG nanorod is greater than 10, because in the calculation of nonlinear nonlocal frequencies, the Simple axial beam model has been used, which is suitable for this condition. The results show that with increasing AFG nanorod diameter, the linear nonlocal frequencies are constant, but the nonlinear nonlocal frequencies have increased, although this increase is not significant. Due to the fact that the AFG nanorod material leads to softness, with increasing the gradient index, linear and nonlinear nonlocal frequencies have decreased. Also, due to the fact that the system under study has a hardening effect, with increasing nonlinear amplitude, nonlinear nonlocal frequencies have increased. The results of these changes are presented in Tables 3 and 4, respectively, for fi-fi and fi-fr boundary conditions in terms of the first frequency mode of the AFG nanorod. As the results show, the general trend of changes is the same for both boundary conditions, but with the difference that in the fi-fi boundary conditions in the first mode, the effect of hardening is maintained, while for the fi-fr boundary conditions, we see a softening effect in the first mode.
Table 1. Comparison study of the present work with Ref. [70] in terms of the first third natural frequencies (GHz)
Table 2. Mechanical properties of AFG nanorod
Next, the linear and nonlinear frequency changes of the AFG nanorod are studied based on the variations of the non-local parameter and the gradient index for the first and second AFG nanorod modes in terms of both fi-fi and fi-fr boundary conditions. These results are derived for AFG nanorods with a length of 10 (nm) and a diameter of 1 (nm) in terms of three nonlinear amplitudes of 0, 1 and 2. The results show that the decreasing effects of nonlocal parameters on linear and nonlinear frequencies for the first mode are negligible. Also, the decreasing slope of the graphs for the lower gradient index is higher, which indicates that the stricter the AFG nanorod, the greater the decreasing effects of the nonlocal parameter on its linear and nonlinear frequencies. Here, too, the trend of general results changes for both fi-fi and fi-fr boundary conditions is similar, except that the frequency-reducing effects of the non-local parameter for In this section, the longitudinal frequency changes of AFG nanorods based on nonlinear amplitudes for different non-local parameter values and gradient indices are evaluated. In this evaluation, the length and diameter of the AFG nanorod are considered equal to 10 and 1 (nm), respectively. As shown in Fig 5, the variations of the longitudinal frequencies of the AFG nanorod versus the nonlinear amplitude changes are greater for the fi-fi than fi-fr boundary conditions. Also, the incremental effect of nonlinear nonlocal frequencies due to the increase of nonlinear amplitude for the second mode of AFG nanorod frequency is higher than the first mode, but this incremental effect will be more in higher modes (third mode onwards). In addition, the results show that the incremental effects of increasing the nonlinear amplitude are the same for different gradient index nanorods. In other words, the nonlinear effects of material changes along the AFG nanorod are neutral. The results of these studies are clearly shown in the various sections of Fig 5a, 5b, 5c, and 5d for both boundary conditions. Finally, the frequency changes of the AFG nanorod versus its length for different non-local parameter values and gradient index are presented in Fig 6. These results are derived for both fi-fi (Figs. 6a, 6b, and 6c) and fi-fr (Figs. 6d, 6e, and 6f) boundary conditions for an AFG nanorod with nonlinear amplitudes of 0, 1, and 2. Figs 6a, 6b, and 6c show that the decreasing effects of linear and nonlinear frequencies due to the non-local parameter in the fi-fi boundary conditions are greater than the fi-fr, which has been observed in previous results. Another important point is that with increasing AFG nanorod length, linear and nonlinear nonlocal frequencies coincide, which shows that the effects of changes in material, nonlocal parameter, and nonlinear amplitude on long AFG nanorods on its frequencies are negligible. The bottom line is that the larger the AFG nanorod length, the higher the nonlinear and nonlocal coefficients must be for the results to be significant. Also on thick nanorods, the effects of nonlinear factors are less than on thin nanorods, see Fig. 6.
4. ConclusionsIn the present study, large amplitude free longitudinal vibration behavior of axially functionally graded nanorods with material gradation is investigated. Different boundary conditions are considered namely fi-fi and fi-fr. However, the present methodology can be employed for other types of classical and non-classical boundaries as well. Hamilton’s principle is utilized for the mathematical formulation and the boundary conditions, the problem can be solved in two parts, linear and nonlinear with the help of Harmonic Differential Quadrature and Multiple Scale methods, respectively. The methodology is general in nature as it can be applied to another type of material gradation and rod patterns. The obtained results are confirmed from previously published results and were found to be in good agreement. Results pertaining to various AFG nanorod parameters for fi-fi and fi-fr boundary conditions are furnished as highlight curves for the fundamental modes. For all combinations of the system parameters, the hardening type of nonlinearity is observed in terms of fi-fi boundary conditions while the softening type is demonstrated for initial modes in terms of fi-fr boundary conditions. Nonlinear nonlocal analysis of rod-type structural components of NEMS (Nano-Electro-Mechanical-Systems) is a topic of major interest in Engineering and Medical sciences.
AcknowledgmentsThe financial support of the research council of Damghan University with grant number 97/Engi/133/307 is acknowledged. Conflicts of InterestThe author declares that there is no conflict of interest regarding the publication of this article. References[1] Craciunescu, C. & Wuttig, M., 2003. New ferromagnetic and functionally graded shape memory alloys. Journal of Optoelectronics and Advanced Materials, 5(1), pp.139-146. [2] Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U. & Mitlin, D., 2006. Metallic nems components fabricated from nanocomposite al–mo films. Nanotechnology, 17 (12), pp.3063. [3] Rahaeifard, M., Kahrobaiyan, M. & Ahmadian, M., 2009. Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. International design engineering technical conferences and computers and information in engineering conference, 2009. 539-544. [4] Witvrouw, A. & Mehta, A., 2005. The use of functionally graded poly-sige layers for mems applications. Materials science forum, Trans Tech Publ, 255-260. [5] Wang, C., Zhang, Y., Ramesh, S.S. & Kitipornchai, S., 2006. Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics, 39 (17), pp.3904. [6] Ebrahimi, F. & Barati, M.R., 2017. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (3), pp.937-952. [7] Khorshidi, M.A., Shariati, M. & Emam, S.A., 2016. Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. International Journal of Mechanical Sciences, 110, pp.160-169. [8] Li, L. & Hu, Y., 2017. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. International Journal of Mechanical Sciences, 120, pp.159-170. [9] Ansari, R. & Sahmani, S., 2011. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Science, 49 (11), pp.1244-1255. [10] Ghadiri, M. & Shafiei, N., 2016. Nonlinear bending vibration of a rotating nanobeam based on nonlocal eringen’s theory using differential quadrature method. Microsystem Technologies, 22 (12), pp.2853-2867. [11] Mehrdad Pourkiaee, S., Khadem, S.E. & Shahgholi, M., 2017. Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. Journal of Vibration and Control, 23 (12), pp.1873-1889. [12] Saffari, S., Hashemian, M. & Toghraie, D., 2017. Dynamic stability of functionally graded nanobeam based on nonlocal timoshenko theory considering surface effects. Physica B: Condensed Matter, 520, pp.97-105. [13] Murmu, T. & Adhikari, S., 2010. Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E: Low-dimensional Systems and Nanostructures, 43 (1), pp.415-422. [14] Ciekot, A., 2012. Free axial vibration of a nanorod using the wkb method. Scientific Research of the Institute of Mathematics and Computer Science, 11 (4), pp.29-34. [15] Nazemnezhad, R., 2017. Investigation of surface effects on free torsional vibration of nanobeams. Amirkabir Journal of Mechanical Engineering, 49 (2), pp.309-316. [16] Nazemnezhad, R. & Fahimi, P., 2017. Free torsional vibration of cracked nanobeams incorporating surface energy effects. Applied Mathematics and Mechanics, 38 (2), pp.217-230. [17] Hosseini-Hashemi, S. & Nazemnezhad, R., 2013. An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Composites Part B: Engineering, 52, pp.199-206. [18] Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R. & Haghighi, M.H.S., 2014. Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects. Composites Part B: Engineering, 61, pp.66-72. [19] Hosseini-Hashemi, S., Nahas, I., Fakher, M. & Nazemnezhad, R., 2014. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects. Smart materials and structures, 23 (3), pp.035012. [20] Nazemnezhad, R. & Hosseini-Hashemi, S., 2014. Nonlocal nonlinear free vibration of functionally graded nanobeams. Composite Structures, 110, pp.192-199. [21] Wang, Q. & Varadan, V., 2007. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Materials and Structures, 16 (1), pp.178. [22] Ebrahimi, F. & Barati, M.R., 2016. Wave propagation analysis of quasi-3d fg nanobeams in thermal environment based on nonlocal strain gradient theory. Applied Physics A, 122 (9), pp.843. [23] Aydogdu, M., 2012. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications, 43, pp.34-40. [24] Yayli, M.Ö., Yanik, F. & Kandemir, S.Y., 2015. Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro & Nano Letters, 10 (11), pp.641-644. [25] Hosseini, A.H., Rahmani, O., Nikmehr, M. & Golpayegani, I.F., 2016. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14 (10), pp.1019-1025. [26] Ecsedi, I. & Baksa, A., 2017. Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and rayleigh model. Mechanics Research Communications, 86, pp.1-4. [27] Liu, H., Liu, H. & Yang, J., 2017. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium. Physica E: Low-Dimensional Systems and Nanostructures, 93, pp.153-159. [28] Murmu, T., Adhikari, S. & Mccarthy, M., 2014. Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. Journal of Computational and Theoretical Nanoscience, 11 (5), pp.1230-1236. [29] Güven, U., 2015. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Applied Mathematics and Mechanics, 36 (10), pp.1305-1318. [30] Karličić, D., Cajić, M., Murmu, T., Kozić, P. & Adhikari, S., 2015. Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field. Meccanica, 50 (6), pp.1605-1621. [31] Narendar, S., 2011. Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia. Physica E: Low-dimensional Systems and Nanostructures, 43 (4), pp.1015-1020. [32] Masoumi, M. & Masoumi, M., 2014. Analytical and numerical investigation into the longitudinal vibration of uniform nanotubes. Frontiers of Mechanical Engineering, 9 (2), pp.142-149. [33] Nahvi, H. & Basiri, S., 2012. Longitudinal vibrations of non-uniform crosssection nanorods based on nonlocal elasticity theory. AIP Conference Proceedings, 2012. American Institute of Physics, 183-186. [34] Faroughi, S. & Goushegir, S.M.H., 2016. Analysis of axial vibration of non-uniform nanorod using boundary characteristic orthogonal polynomials. Modares Mechanical Engineering, 16 (1), pp.203-212. [35] Kiani, K., 2010. Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique. Physica E: Low-Dimensional Systems and Nanostructures, 43 (1), pp.387-397. [36] Danesh, M., Farajpour, A. & Mohammadi, M., 2012. Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mechanics Research Communications, 39 (1), pp.23-27. [37] Guo, S.-Q. & Yang, S.-P., 2012. Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta Mechanica Sinica, 28 (3), pp.801-807. [38] Yaylı, M.Ö. & Çerçevik, A.E., 2015. Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17 (6), pp.2907-2921. [39] Bahrami, A., 2017. Free vibration, wave power transmission and reflection in multi-cracked nanorods. Composites Part B: Engineering, 127, pp.53-62. [40] Loghmani, M., Yazdi, M.R.H. & Bahrami, M.N., 2017. Longitudinal vibration analysis of nanorods with multiple discontinuities based on nonlocal elasticity theory using wave approach. Microsystem Technologies, pp.1-17. [41] Nazemnezhad, R. & Kamali, K., 2018. Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal bishop’s theory. Steel and Compositre Structures, An International Journal, In Press. [42] Nazemnezhad, R. & Kamali, K., 2018. An analytical study on the size dependent longitudinal vibration analysis of thick nanorods. Materials Research Express, 5 (7), pp.075016. [43] Karličić, D.Z., Ayed, S. & Flaieh, E., 2018. Nonlocal axial vibration of the multiple bishop nanorod system. Mathematics and Mechanics of Solids, pp.1081286518766577. [44] Li, X.F., Shen, Z.B. & Lee, K.Y., 2017. Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97(5), pp.602-616. [45] Nazemnezhad, R. & Kamali, K., 2016. Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal rayleigh theory. Modares Mechanical Engineering, 16 (5), pp.19-28. [46] Karličić, D., Kozić, P., Murmu, T. & Adhikari, S., 2015. Vibration insight of a nonlocal viscoelastic coupled multi-nanorod system. European Journal of Mechanics-A/Solids, 54, pp.132-145. [47] Karličić, D., Cajić, M., Murmu, T. & Adhikari, S., 2015. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics-A/Solids, 49, pp.183-196. [48] Narendar, S. & Gopalakrishnan, S., 2011. Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Composites Part B: Engineering, 42 (7), pp.2013-2023. [49] Murmu, T. & Adhikari, S., 2011. Axial instability of double-nanobeam-systems. Physics Letters A, 375 (3), pp.601-608. [50] Aydogdu, M., 2015. A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der waals force effects. Journal of Vibration and Control, 21 (16), pp.3132-3154. [51] Yayli, M.Ö., 2014. On the axial vibration of carbon nanotubes with different boundary conditions. Micro & Nano Letters, 9 (11), pp.807-811. [52] Aydogdu, M., 2014. Longitudinal wave propagation in multiwalled carbon nanotubes. Composite Structures, 107, pp.578-584. [53] Yayli, M.Ö., 2018. Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material. Micro & Nano Letters, 13 (7), pp.1031-1035. [54] Barretta, R., Feo, L., Luciano, R. & De Sciarra, F.M., 2015. A gradient eringen model for functionally graded nanorods. Composite Structures, 131, pp.1124-1131. [55] Şimşek, M., 2012. Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Computational Materials Science, 61, pp.257-265. [56] Jin, H., Sui, S., Zhu, C. & Li, C., 2023. Axial free vibration of rotating fg piezoelectric nano-rods accounting for nonlocal and strain gradient effects. Journal of Vibration Engineering & Technologies, 11 (2), pp.537-549. [57] Akgöz, B. & Civalek, Ö., 2014. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. Journal of Vibration and Control, 20 (4), pp.606-616. [58] Li, L., Hu, Y. & Li, X., 2016. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences, 115, pp.135-144. [59] Akgöz, B. & Civalek, Ö., 2013. Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (fgm). Composites Part B: Engineering, 55, pp.263-268. [60] Uzun, B., Civalek, Ö. & Yaylı, M.Ö., 2022. Nonlocal strain gradient approach for axial vibration analysis of arbitrary restrained nanorod. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44 (11), pp.532. [61] Uzun, B., Civalek, Ö. & Yaylı, M.Ö., 2023. Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity. Archive of Applied Mechanics, 93 (4), pp.1605-1630. [62] Mohammadimehr, M., Monajemi, A. & Moradi, M., 2015. Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using dqm. Journal of Mechanical Science and Technology, 29 (6), pp.2297-2305. [63] Arda, M. & Aydogdu, M., 2017. Longitudinal vibration of cnts viscously damped in span. International Journal of Engineering and Applied Sciences, 9 (2), pp.22-38. [64] Şİmşek, M., 2016. Axial vibration analysis of a nanorod embedded in elastic medium using nonlocal strain gradient theory. Çukurova University Journal of the Faculty of Engineering and Architecture. [65] Nazemnezhad, R. & Shokrollahi, H., 2018. Free axial vibration analysis of functionally graded nanorods using surface elasticity theory. Modares Mechanical Engineering, 18 (5), pp.414-424. [66] Nazemnezhad, R., Mahoori, R. & Samadzadeh, A., 2019. Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods. European Journal of Mechanics-A/Solids, 77, pp.103784. [67] Fernandes, R., El-Borgi, S., Mousavi, S., Reddy, J. & Mechmoum, A., 2017. Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Physica E: Low-dimensional Systems and Nanostructures, 88, pp.18-25. [68] Fatahi-Vajari, A. & Azimzadeh, Z., 2018. Analysis of nonlinear axial vibration of single-walled carbon nanotubes using homotopy perturbation method. Indian Journal of Physics, 92 (11), pp.1425-1438. [69] Fatahi‐Vajari, A., Azimzadeh, Z. & Hussain, M., 2019. Nonlinear coupled axial–torsional vibration of single‐walled carbon nanotubes using homotopy perturbation method. Micro & Nano Letters, 14 (14), pp.1366-1371. [70] Nazemnezhad, R. & Zare, M., 2021. On the study of nonlocal effect on the internal resonances of axial oscillation of nanorods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (8), pp.394. [71] Jamali Shakhlavi, S., Hosseini-Hashemi, S. & Nazemnezhad, R., 2022. Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of rayleigh axial vibrations. The European Physical Journal Plus, 137 (4), pp.1-20. [72] Jamali Shakhlavi, S., Hosseini-Hashemi, S. & Nazemnezhad, R., 2022. Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium. Journal of Thermal Stresses, 45 (2), pp.139-153. [73] Nazemnezhad, R. & Shokrollahi, H., 2018. Free axial vibration analysis of functionally graded nanorods using surface elasticity theory. Modares Mechanical Engineering, 18 (9), pp.131-141. [74] Nazemnezhad, R. & Shokrollahi, H., 2022. Axial frequency analysis of axially functionally graded love-bishop nanorods using surface elasticity theory. Steel and Composite Structures, 42 (5), pp.699-710. [75] Nazemnezhad, R., Zare, M. & Hosseini-Hashemi, S., 2018. Effect of nonlocal elasticity on vibration analysis of multi-layer graphene sheets using sandwich model. European Journal of Mechanics-A/Solids, 70, pp.75-85. [76] Striz, A., Wang, X. & Bert, C., 1995. Harmonic differential quadrature method and applications to analysis of structural components. Acta Mechanica, 111 (1), pp.85-94.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مراجع | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[1] Craciunescu, C. & Wuttig, M., 2003. New ferromagnetic and functionally graded shape memory alloys. Journal of Optoelectronics and Advanced Materials, 5(1), pp.139-146. [2] Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U. & Mitlin, D., 2006. Metallic nems components fabricated from nanocomposite al–mo films. Nanotechnology, 17 (12), pp.3063. [3] Rahaeifard, M., Kahrobaiyan, M. & Ahmadian, M., 2009. Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. International design engineering technical conferences and computers and information in engineering conference, 2009. 539-544. [4] Witvrouw, A. & Mehta, A., 2005. The use of functionally graded poly-sige layers for mems applications. Materials science forum, Trans Tech Publ, 255-260. [5] Wang, C., Zhang, Y., Ramesh, S.S. & Kitipornchai, S., 2006. Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics, 39 (17), pp.3904. [6] Ebrahimi, F. & Barati, M.R., 2017. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (3), pp.937-952. [7] Khorshidi, M.A., Shariati, M. & Emam, S.A., 2016. Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. International Journal of Mechanical Sciences, 110, pp.160-169. [8] Li, L. & Hu, Y., 2017. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. International Journal of Mechanical Sciences, 120, pp.159-170. [9] Ansari, R. & Sahmani, S., 2011. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Science, 49 (11), pp.1244-1255. [10] Ghadiri, M. & Shafiei, N., 2016. Nonlinear bending vibration of a rotating nanobeam based on nonlocal eringen’s theory using differential quadrature method. Microsystem Technologies, 22 (12), pp.2853-2867. [11] Mehrdad Pourkiaee, S., Khadem, S.E. & Shahgholi, M., 2017. Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. Journal of Vibration and Control, 23 (12), pp.1873-1889. [12] Saffari, S., Hashemian, M. & Toghraie, D., 2017. Dynamic stability of functionally graded nanobeam based on nonlocal timoshenko theory considering surface effects. Physica B: Condensed Matter, 520, pp.97-105. [13] Murmu, T. & Adhikari, S., 2010. Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E: Low-dimensional Systems and Nanostructures, 43 (1), pp.415-422. [14] Ciekot, A., 2012. Free axial vibration of a nanorod using the wkb method. Scientific Research of the Institute of Mathematics and Computer Science, 11 (4), pp.29-34. [15] Nazemnezhad, R., 2017. Investigation of surface effects on free torsional vibration of nanobeams. Amirkabir Journal of Mechanical Engineering, 49 (2), pp.309-316. [16] Nazemnezhad, R. & Fahimi, P., 2017. Free torsional vibration of cracked nanobeams incorporating surface energy effects. Applied Mathematics and Mechanics, 38 (2), pp.217-230. [17] Hosseini-Hashemi, S. & Nazemnezhad, R., 2013. An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Composites Part B: Engineering, 52, pp.199-206. [18] Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R. & Haghighi, M.H.S., 2014. Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects. Composites Part B: Engineering, 61, pp.66-72. [19] Hosseini-Hashemi, S., Nahas, I., Fakher, M. & Nazemnezhad, R., 2014. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects. Smart materials and structures, 23 (3), pp.035012. [20] Nazemnezhad, R. & Hosseini-Hashemi, S., 2014. Nonlocal nonlinear free vibration of functionally graded nanobeams. Composite Structures, 110, pp.192-199. [21] Wang, Q. & Varadan, V., 2007. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Materials and Structures, 16 (1), pp.178. [22] Ebrahimi, F. & Barati, M.R., 2016. Wave propagation analysis of quasi-3d fg nanobeams in thermal environment based on nonlocal strain gradient theory. Applied Physics A, 122 (9), pp.843. [23] Aydogdu, M., 2012. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications, 43, pp.34-40. [24] Yayli, M.Ö., Yanik, F. & Kandemir, S.Y., 2015. Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro & Nano Letters, 10 (11), pp.641-644. [25] Hosseini, A.H., Rahmani, O., Nikmehr, M. & Golpayegani, I.F., 2016. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14 (10), pp.1019-1025. [26] Ecsedi, I. & Baksa, A., 2017. Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and rayleigh model. Mechanics Research Communications, 86, pp.1-4. [27] Liu, H., Liu, H. & Yang, J., 2017. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium. Physica E: Low-Dimensional Systems and Nanostructures, 93, pp.153-159. [28] Murmu, T., Adhikari, S. & Mccarthy, M., 2014. Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. Journal of Computational and Theoretical Nanoscience, 11 (5), pp.1230-1236. [29] Güven, U., 2015. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Applied Mathematics and Mechanics, 36 (10), pp.1305-1318. [30] Karličić, D., Cajić, M., Murmu, T., Kozić, P. & Adhikari, S., 2015. Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field. Meccanica, 50 (6), pp.1605-1621. [31] Narendar, S., 2011. Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia. Physica E: Low-dimensional Systems and Nanostructures, 43 (4), pp.1015-1020. [32] Masoumi, M. & Masoumi, M., 2014. Analytical and numerical investigation into the longitudinal vibration of uniform nanotubes. Frontiers of Mechanical Engineering, 9 (2), pp.142-149. [33] Nahvi, H. & Basiri, S., 2012. Longitudinal vibrations of non-uniform crosssection nanorods based on nonlocal elasticity theory. AIP Conference Proceedings, 2012. American Institute of Physics, 183-186. [34] Faroughi, S. & Goushegir, S.M.H., 2016. Analysis of axial vibration of non-uniform nanorod using boundary characteristic orthogonal polynomials. Modares Mechanical Engineering, 16 (1), pp.203-212. [35] Kiani, K., 2010. Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique. Physica E: Low-Dimensional Systems and Nanostructures, 43 (1), pp.387-397. [36] Danesh, M., Farajpour, A. & Mohammadi, M., 2012. Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mechanics Research Communications, 39 (1), pp.23-27. [37] Guo, S.-Q. & Yang, S.-P., 2012. Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta Mechanica Sinica, 28 (3), pp.801-807. [38] Yaylı, M.Ö. & Çerçevik, A.E., 2015. Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17 (6), pp.2907-2921. [39] Bahrami, A., 2017. Free vibration, wave power transmission and reflection in multi-cracked nanorods. Composites Part B: Engineering, 127, pp.53-62. [40] Loghmani, M., Yazdi, M.R.H. & Bahrami, M.N., 2017. Longitudinal vibration analysis of nanorods with multiple discontinuities based on nonlocal elasticity theory using wave approach. Microsystem Technologies, pp.1-17. [41] Nazemnezhad, R. & Kamali, K., 2018. Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal bishop’s theory. Steel and Compositre Structures, An International Journal, In Press. [42] Nazemnezhad, R. & Kamali, K., 2018. An analytical study on the size dependent longitudinal vibration analysis of thick nanorods. Materials Research Express, 5 (7), pp.075016. [43] Karličić, D.Z., Ayed, S. & Flaieh, E., 2018. Nonlocal axial vibration of the multiple bishop nanorod system. Mathematics and Mechanics of Solids, pp.1081286518766577. [44] Li, X.F., Shen, Z.B. & Lee, K.Y., 2017. Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97(5), pp.602-616. [45] Nazemnezhad, R. & Kamali, K., 2016. Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal rayleigh theory. Modares Mechanical Engineering, 16 (5), pp.19-28. [46] Karličić, D., Kozić, P., Murmu, T. & Adhikari, S., 2015. Vibration insight of a nonlocal viscoelastic coupled multi-nanorod system. European Journal of Mechanics-A/Solids, 54, pp.132-145. [47] Karličić, D., Cajić, M., Murmu, T. & Adhikari, S., 2015. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics-A/Solids, 49, pp.183-196. [48] Narendar, S. & Gopalakrishnan, S., 2011. Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Composites Part B: Engineering, 42 (7), pp.2013-2023. [49] Murmu, T. & Adhikari, S., 2011. Axial instability of double-nanobeam-systems. Physics Letters A, 375 (3), pp.601-608. [50] Aydogdu, M., 2015. A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der waals force effects. Journal of Vibration and Control, 21 (16), pp.3132-3154. [51] Yayli, M.Ö., 2014. On the axial vibration of carbon nanotubes with different boundary conditions. Micro & Nano Letters, 9 (11), pp.807-811. [52] Aydogdu, M., 2014. Longitudinal wave propagation in multiwalled carbon nanotubes. Composite Structures, 107, pp.578-584. [53] Yayli, M.Ö., 2018. Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material. Micro & Nano Letters, 13 (7), pp.1031-1035. [54] Barretta, R., Feo, L., Luciano, R. & De Sciarra, F.M., 2015. A gradient eringen model for functionally graded nanorods. Composite Structures, 131, pp.1124-1131. [55] Şimşek, M., 2012. Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Computational Materials Science, 61, pp.257-265. [56] Jin, H., Sui, S., Zhu, C. & Li, C., 2023. Axial free vibration of rotating fg piezoelectric nano-rods accounting for nonlocal and strain gradient effects. Journal of Vibration Engineering & Technologies, 11 (2), pp.537-549. [57] Akgöz, B. & Civalek, Ö., 2014. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. Journal of Vibration and Control, 20 (4), pp.606-616. [58] Li, L., Hu, Y. & Li, X., 2016. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences, 115, pp.135-144. [59] Akgöz, B. & Civalek, Ö., 2013. Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (fgm). Composites Part B: Engineering, 55, pp.263-268. [60] Uzun, B., Civalek, Ö. & Yaylı, M.Ö., 2022. Nonlocal strain gradient approach for axial vibration analysis of arbitrary restrained nanorod. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44 (11), pp.532. [61] Uzun, B., Civalek, Ö. & Yaylı, M.Ö., 2023. Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity. Archive of Applied Mechanics, 93 (4), pp.1605-1630. [62] Mohammadimehr, M., Monajemi, A. & Moradi, M., 2015. Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using dqm. Journal of Mechanical Science and Technology, 29 (6), pp.2297-2305. [63] Arda, M. & Aydogdu, M., 2017. Longitudinal vibration of cnts viscously damped in span. International Journal of Engineering and Applied Sciences, 9 (2), pp.22-38. [64] Şİmşek, M., 2016. Axial vibration analysis of a nanorod embedded in elastic medium using nonlocal strain gradient theory. Çukurova University Journal of the Faculty of Engineering and Architecture. [65] Nazemnezhad, R. & Shokrollahi, H., 2018. Free axial vibration analysis of functionally graded nanorods using surface elasticity theory. Modares Mechanical Engineering, 18 (5), pp.414-424. [66] Nazemnezhad, R., Mahoori, R. & Samadzadeh, A., 2019. Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods. European Journal of Mechanics-A/Solids, 77, pp.103784. [67] Fernandes, R., El-Borgi, S., Mousavi, S., Reddy, J. & Mechmoum, A., 2017. Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Physica E: Low-dimensional Systems and Nanostructures, 88, pp.18-25. [68] Fatahi-Vajari, A. & Azimzadeh, Z., 2018. Analysis of nonlinear axial vibration of single-walled carbon nanotubes using homotopy perturbation method. Indian Journal of Physics, 92 (11), pp.1425-1438. [69] Fatahi‐Vajari, A., Azimzadeh, Z. & Hussain, M., 2019. Nonlinear coupled axial–torsional vibration of single‐walled carbon nanotubes using homotopy perturbation method. Micro & Nano Letters, 14 (14), pp.1366-1371. [70] Nazemnezhad, R. & Zare, M., 2021. On the study of nonlocal effect on the internal resonances of axial oscillation of nanorods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (8), pp.394. [71] Jamali Shakhlavi, S., Hosseini-Hashemi, S. & Nazemnezhad, R., 2022. Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of rayleigh axial vibrations. The European Physical Journal Plus, 137 (4), pp.1-20. [72] Jamali Shakhlavi, S., Hosseini-Hashemi, S. & Nazemnezhad, R., 2022. Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium. Journal of Thermal Stresses, 45 (2), pp.139-153. [73] Nazemnezhad, R. & Shokrollahi, H., 2018. Free axial vibration analysis of functionally graded nanorods using surface elasticity theory. Modares Mechanical Engineering, 18 (9), pp.131-141. [74] Nazemnezhad, R. & Shokrollahi, H., 2022. Axial frequency analysis of axially functionally graded love-bishop nanorods using surface elasticity theory. Steel and Composite Structures, 42 (5), pp.699-710. [75] Nazemnezhad, R., Zare, M. & Hosseini-Hashemi, S., 2018. Effect of nonlocal elasticity on vibration analysis of multi-layer graphene sheets using sandwich model. European Journal of Mechanics-A/Solids, 70, pp.75-85. [76] Striz, A., Wang, X. & Bert, C., 1995. Harmonic differential quadrature method and applications to analysis of structural components. Acta Mechanica, 111 (1), pp.85-94. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آمار تعداد مشاهده مقاله: 156 تعداد دریافت فایل اصل مقاله: 149 |