- Muhammad, R., Khan, M. I., Jameel, M., & Khan, N. B., 2020. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Computer Methods and Programs in Biomedicine, 188, 105298.
- Waini, I., Ishak, A., & Pop, I., 2020. Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid. Alexandria Engineering Journal, 59(3), 1881-1891.
- Safdar, R., Jawad, M., Hussain, S., Imran, M., Akgül, A., & Jamshed, W., 2022. Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model. Chinese Journal of Physics, 77, 1465-1478.
- Nabwey, H. A., EL-Kabeir, S. M. M., Rashad, A. M., & Abdou, M. M. M., 2022. Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media. Alexandria Engineering Journal, 61(3), 1804-1822.
- Wahid, N. S., Arifin, N. M., Khashi'ie, N. S., Pop, I., Bachok, N., & Hafidzuddin, M. E. H., 2022. MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alexandria Engineering Journal, 61(4), 3323-3333.
- Ali, B., Liu, S., Jubair, S., Khalifa, H. A. E. W., & Abd El-Rahman, M., 2023. Exploring the impact of Hall and ion slip effects on mixed convective flow of Casson fluid Model: A stochastic investigation through non-Fourier double diffusion theories using ANNs techniques. Thermal Science and Engineering Progress, 46, 102237.
- Choi, S. U., & Eastman, J. A., 1995. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
- Sharma, R. P., Badak, K., Mishra, S. R., & Ahmed, S., 2023. Behavior of hybrid nanostructure and dust particles in fluid motion with thermal radiation and memory effects. The European Physical Journal Plus, 138(2), 159.
- Chu, Y. M., Bashir, S., Ramzan, M., & Malik, M. Y., 2022. Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematical Methods in the Applied Sciences.
- Khan, A., Hassan, B., Ashraf, E. E., & Shah, S. Y. A., 2022. Thermally dissipative micropolar hybrid nanofluid flow over a spinning needle influenced by Hall current and gyrotactic microorganisms. Heat Transfer, 51(1), 1170-1192.
- Eid, M. R., & Nafe, M. A., 2022. Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves in Random and Complex Media, 32(3), 1103-1127.
- Ojjela, O., 2022. Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation. Mathematics and Computers in Simulation, 193, 100-122.
- Ali, B., Jubair, S., Aluraikan, A., Abd El-Rahman, M., Eldin, S. M., & Khalifa, H. A. E. W., 2023. Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface. Results in Engineering, 20, 101536.
- Gumber, P., Yaseen, M., Rawat, S. K., & Kumar, M., 2022. Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differential Equations in Applied Mathematics, 5, 100240.
- Ali, B., Jubair, S., Fathima, D., Akhter, A., Rafique, K., & Mahmood, Z., 2023. MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects. Science Progress, 106(2), 00368504231176151.
- Ali, B., AlBaidani, M. M., Jubair, S., Ganie, A. H., & Abdelmohsen, S. A., 2023. Computational framework of hydrodynamic stagnation point flow of nanomaterials with natural convection configured by a heated stretching sheet. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, e202200542.
- Ali, B., Mishra, N. K., Rafique, K., Jubair, S., Mahmood, Z., & Eldin, S. M., 2023. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alexandria Engineering Journal, 72, 83-96.
- Elattar, S., Helmi, M. M., Elkotb, M. A., El-Shorbagy, M. A., Abdelrahman, A., Bilal, M., & Ali, A., 2022. Computational assessment of hybrid nanofluid flow with the influence of hall current and chemical reaction over a slender stretching surface. Alexandria Engineering Journal, 61(12), 10319-10331.
- Sabu, A. S., Mackolil, J., Mahanthesh, B., & Mathew, A., 2022. Nanoparticle aggregation kinematics on the quadratic convective magnetohydrodynamic flow of nanomaterial past an inclined flat plate with sensitivity analysis. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(3), 1056-1066.
- Kodi, R., & Mopuri, O., 2022. Unsteady MHD oscillatory Casson fluid flow past an inclined vertical porous plate in the presence of chemical reaction with heat absorption and Soret effects. Heat Transfer, 51(1), 733-752.
- Osman, H. I., Omar, N. F. M., Vieru, D., & Ismail, Z., 2022. A Study of MHD Free Convection Flow Past an Infinite Inclined Plate. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92(1), pp. 18-27.
- Jha, B. K., & Samaila, G., 2022. The Combined Impact of Thermal Radiation and Thermophoresis on Buoyancy-Driven Flow Near an Inclined Porous Plate. Journal of Heat Transfer, 144(10).
- Sheri, S. R., Peesu, M., & Mamidi Narsimha, R., 2022. Hall current, chemical reaction, and radiation results on transient magnetohydrodynamic flow past an inclined plate: FEM. Heat Transfer, 51(2), pp. 1876-1899.
- Hazarika, S., Ahmed, S., & Yao, S. W., 2023. Investigation of Cu–water nano-fluid of natural convection hydro-magnetic heat transport in a Darcian porous regime with diffusion-thermo. Applied Nanoscience, 13(1), 283-293.
- Ali, L., Liu, X., Ali, B., Mujeed, S., Abdal, S., & Khan, S. A., 2020. Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet. Coatings, 10(2), 170.
- Sarada, K., Gowda, R. J. P., Sarris, I. E., Kumar, R. N., & Prasannakumara, B. C., 2021. Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids, 6(8), p. 264.
- Reza-E-Rabbi, S., Ahmmed, S. F., Arifuzzaman, S. M., Sarkar, T., & Khan, M. S., 2020. Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. Engineering Science and Technology, an International Journal, 23(3), pp. 605-617.
- Warke, A. S., Ramesh, K., Mebarek-Oudina, F., & Abidi, A., 2022. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. Journal of Thermal Analysis and Calorimetry, 147(12), pp. 6901-6912.
- Guedri, K., Khan, A., Gul, T., Mukhtar, S., Alghamdi, W., Yassen, M. F., & Tag Eldin, E., 2022. Thermally Dissipative Flow and Entropy Analysis for Electromagnetic Trihybrid Nanofluid Flow Past a Stretching Surface. ACS omega.
- Shah, S. A. A., Ahammad, N. A., Din, E. M. T. E., Gamaoun, F., Awan, A. U., & Ali, B., 2022. Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials, 12(13), 2174.
- Hazarika, S., Ahmed, S., & Chamkha, A. J., 2021. Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling. Mathematics and Computers in Simulation, 182, 819-837.
- Waqas, H., Imran, M., Muhammad, T., Sait, S. M., & Ellahi, R., 2020. On bio-convection thermal radiation in Darcy–Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over stretching cylinder/plate. International Journal of Numerical Methods for Heat & Fluid Flow.
- Yusuf, T. A., Mabood, F., Prasannakumara, B. C., & Sarris, I. E., 2021. Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids, 6(3), 109.
- Khan, A., Saeed, A., Tassaddiq, A., Gul, T., Mukhtar, S., Kumam, P., & Kumam, W., 2021. Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies in Thermal Engineering, 25, 100989.
- Bhatti, M. M., Arain, M. B., Zeeshan, A., Ellahi, R., & Doranehgard, M. H., 2022. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage, 45, 103511.
- Das, B., & Ahmed, S., 2023. Numerical modeling of bioconvection and heat transfer analysis of Prandtl nanofluid in an inclined stretching sheet: A finite difference scheme. Numerical Heat Transfer, Part A: Applications, 1-21.
- Shah, S. A., Mouldi, A., & Sene, N., 2022. Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface. Journal of Nanomaterials, 2022.
- Gul, T., Mukhtar, S., Alghamdi, W., Ali, I., Saeed, A., & Kumam, P., 2022. Entropy and Bejan Number Influence on the Liquid Film Flow of Viscoelastic Hybrid Nanofluids in a Porous Space in Terms of Heat Transfer. ACS omega.
- Yazdi, M. E., Moradi, A., & Dinarvand, S., 2014. MHD mixed convection stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid in the presence of thermal radiation. Arabian journal for science and engineering, 39, 2251-2261.
- Liao, S. J., 1999. Explicit totally analytic approximate solution for Blasius viscous flow problems. International Journal of Non-Linear Mechanics, 34, 759-778.
- Liao, S. J., 2010. An optimal homotopy analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15(8), pp.2003-2016.
|