تعداد نشریات | 21 |
تعداد شمارهها | 588 |
تعداد مقالات | 8,756 |
تعداد مشاهده مقاله | 66,630,499 |
تعداد دریافت فایل اصل مقاله | 7,195,887 |
Experimental Study of Heat Transfer Augmentation Characteristics of a Tube Affected by Geometric Parameters of Coiled Spring Inserts | ||
Journal of Heat and Mass Transfer Research | ||
دوره 11، شماره 1 - شماره پیاپی 21، مرداد 2024، صفحه 127-138 اصل مقاله (514.56 K) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2024.30106.1426 | ||
نویسندگان | ||
Arvind Ashok Kapse* ؛ Vinod Chimanrao Shewale | ||
Department of Mechanical Engineering, M.V.P.S’s K.B.T. College of Engineering, Nashik, 422013, Maharashtra, India | ||
تاریخ دریافت: 14 اسفند 1401، تاریخ بازنگری: 11 بهمن 1402، تاریخ پذیرش: 13 بهمن 1402 | ||
چکیده | ||
In the present study, the heat transfer and flow friction characteristics of a circular tube with coiled spring inserts are experimentally reported for a fully developed turbulent flow regime. Experimental investigations were performed in a circular concentric tube in a tube heat exchanger in the Reynolds number (Re) range of 8000–32,000 with water as a working fluid. The average Nusselt number ratio (Nua/Nup) and average friction factor ratio (fa/fp) with and without inserts are reported to be in the range of 1.79–2.79 and 2.44–4.17, respectively, for the tested six geometries of the inserts. The Nusselt number ratio (Nua/Nuc) based on equal pumping power criteria is also reported and found to be in the range of 0.94–1.24. The effects of varying pitch to length of insert ratio (p/l) and diameter of insert to the inner diameter of tube ratio (dc/Di) on heat transfer and pressure drop are reported, and empirical correlation is given for Nusselt number in terms of Reynolds number (Re), pitch to length of insert ratio (p/l), insert diameter to inner diameter of tube ratio (dc/Di), and Prandtl number (Pr). | ||
کلیدواژهها | ||
Passive insert؛ Average performance ratio؛ Turbulent flow | ||
مراجع | ||
[1] Liu, S., & Sakr, M., 2013. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and sustainable energy reviews, 19, pp. 64-81. [2] Eiamsa-Ard, S., Thianpong, C., Eiamsa-Ard, P. and Promvonge, P., 2010. Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. International Communications in Heat and Mass Transfer, 37(1), pp. 39-46. [3] Singh, S. K., & Sarkar, J., 2020. Improving hydrothermal performance of hybrid nanofluid in double tube heat exchanger using tapered wire coil turbulator. Advanced Powder Technology, 31(5), pp. 2092-2100. [4] Singh, S. K., & Sarkar, J., 2021. Thermohydraulic behavior of concentric tube heat exchanger inserted with conical wire coil using mono/hybrid nanofluids. International Communications in Heat and Mass Transfer, 122, p. 105134. [5] Keklikcioglu, O., & Ozceyhan, V., 2022. Heat transfer augmentation in a tube with conical wire coils using a mixture of ethylene glycol/water as a fluid. International Journal of Thermal Sciences, 171, p. 107204. [6] García, A., Herrero-Martin, R., Pérez-García, J., & Solano, J. P., 2023. Validation of a new methodological approach for the selection of wire-coil inserts in thermal equipment. Applied Thermal Engineering, 218, p. 119273. [7] Nakhchi, M. E., Esfahani, J. A., & Kim, K. C., 2020. Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts. International Journal of Heat and Mass Transfer, 148, p. 119143. [8] Bahiraei, M., Gharagozloo, K., & Moayedi, H. 2020. Experimental study on effect of employing twisted conical strip inserts on thermohydraulic performance considering geometrical parameters. International Journal of Thermal Sciences, 149, p. 106178. [9] Subirana, A.M., Solano, J.P., Herrero-Martín, R., García, A. and Pérez-García, J., 2023. Mixed convection phenomena in tubes with wire coil inserts. Thermal Science and Engineering Progress, 42, p. 101839. [10] Sarviya, R. M., & Fuskele, V., 2018. Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. Journal of Energy Storage, 19, pp. 10-14. [11] Kapse, A. A., Shewale, V.C., Mogal, S. P., and Kakade, A B., 2023. A comprehensive review on passive heat transfer enhancements in pipe exchangers. JP journal of heat and mass transfer, 35, pp. 153-185. [12] Yang, C. S., Jeng, D. Z., Yang, Y. J., Chen, H. R., & Gau, C., 2011. Experimental study of pre-swirl flow effect on the heat transfer process in the entry region of a convergent pipe. Experimental Thermal and Fluid Science, 35(1), pp. 73-81. [13] Promvonge, P., 2008. Thermal augmentation in circular tube with twisted tape and wire coil turbulators. Energy Conversion and Management, 49(11), pp. 2949-2955. [14] Singh, S. K., & Sarkar, J., 2021. Hydrothermal performance comparison of modified twisted tapes and wire coils in tubular heat exchanger using hybrid nanofluid. International Journal of Thermal Sciences, 166, p. 106990. [15] Kapse, A. A., Dongarwar P. R., and Gawande, R. R., 2017. Thermo hydraulic Performance Comparison of Compound Inserts. Thermal Science, 21, pp. 1309-1319 [16] Kapse, A. A., Dongarwar, P. R., & Gawande, R. R., 2017. Experimental investigation of turbulent heat transfer performance in internal flow using a star shape cross sectioned twisted rod inserts. Heat and Mass Transfer, 53, pp. 253-264. [17] Guo, J., Yan, Y., Liu, W., Jiang, F., & Fan, A. 2013. Effects of upwind area of tube inserts on heat transfer and flow resistance characteristics of turbulent flow. Experimental thermal and fluid science, 48, pp. 147-155. [18] Eiamsa-ard, S., Pethkool, S., Thianpong, C., & Promvonge, P. 2008. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. International Communications in Heat and Mass Transfer, 35(2), pp. 120-129. [19] Incropera, F.P., and DeWitt, D.P., 2010. Fundamentals of Heat and Mass Transfer, Wiley. [20] Bergles, A.E., Blumenkrantz, A.R., and Taborek, J., 1974. Performance evaluation criteria for enhanced heat transfer surfaces. In International Heat Transfer Conference 5 (IHTC-5), Tokyo, Japan, pp. 239-243. DOI: 10.1615/IHTC5.2130. [21] Deshmukh, P. W., & Vedula, R. P., 2014. Heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with vortex generator inserts. International Journal of Heat and Mass Transfer, 79, pp. 551-560. | ||
آمار تعداد مشاهده مقاله: 1,794 تعداد دریافت فایل اصل مقاله: 423 |