تعداد نشریات | 21 |
تعداد شمارهها | 600 |
تعداد مقالات | 8,881 |
تعداد مشاهده مقاله | 66,802,708 |
تعداد دریافت فایل اصل مقاله | 7,390,698 |
Understanding Image Memorability through Localized Stimuli | ||
Modeling and Simulation in Electrical and Electronics Engineering | ||
دوره 3، شماره 2 - شماره پیاپی 12، آبان 2023، صفحه 1-6 اصل مقاله (761.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/mseee.2024.33159.1143 | ||
نویسندگان | ||
Amir Shokri1؛ Farzin Yaghmaee* 2 | ||
1Electrical & Computer Engineering Department, Semnan University, Semnan, Iran. | ||
2Faculty of Electrical and Computer Engineering (ECE), Semnan University, Semnan, Iran. | ||
تاریخ دریافت: 13 بهمن 1402، تاریخ بازنگری: 08 فروردین 1403، تاریخ پذیرش: 11 تیر 1403 | ||
چکیده | ||
In today's digital age, we are bombarded with images from the internet, social media, and online magazines. It is fascinating how we can remember so many of these images and their details. However, not every image is equally memorable; some stay with us more than others. Scientists have explored why this is the case. In our research, we are particularly interested in how images that showcase Iranian life and culture stick in the memories of Iranian adults. To investigate this, we created a new collection called the SemMem dataset, which is full of culturally relevant images. We adapted a memory game from earlier studies to test how memorable these images are. To analyze memorability, we used two deep learning architectures, ResNet 50 and ResNet 101. These architectures helped us estimate which images are likely to be remembered. Our findings confirmed that images connected to Iranian culture are indeed more memorable to Iranians, highlighting the impact of familiar cultural elements on memory retention. | ||
کلیدواژهها | ||
Visual Memory؛ Memorability؛ Image Memorability؛ Recognition Memory؛ Quantifying image memorability | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 187 تعداد دریافت فایل اصل مقاله: 96 |