
تعداد نشریات | 21 |
تعداد شمارهها | 620 |
تعداد مقالات | 9,087 |
تعداد مشاهده مقاله | 67,269,438 |
تعداد دریافت فایل اصل مقاله | 7,781,557 |
A new subclass of Ma-Minda starlike functions associated with a heart-shaped curve | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 4، دوره 16، شماره 7، مهر 2025، صفحه 37-46 اصل مقاله (975.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.29486.4235 | ||
نویسندگان | ||
Vahid Vesali؛ Shahram Najafzadeh* | ||
Department of Mathematics, Payame Noor University, Tehran, Iran | ||
تاریخ دریافت: 03 بهمن 1401، تاریخ بازنگری: 12 اسفند 1402، تاریخ پذیرش: 23 تیر 1403 | ||
چکیده | ||
In this paper, we extend the $q$-derivative operator, which plays an essential role in quantum calculus. Indeed, by using the Hadamard product and generalized Koebe function we define the following $(\alpha,\beta,\gamma)$-derivative operator \begin{equation*} {\rm d}_{\alpha,\beta,\gamma} f(z)=\frac{1}{z}\left\{f(z)*\mathfrak{L}_{\alpha,\beta,\gamma}(z)\right\}, \end{equation*} where \begin{equation*} \mathfrak{L}_{\alpha,\beta,\gamma}(z)=\frac{2(1-\gamma)z}{(1-\alpha z)(1-\beta z)}, \end{equation*} and $\alpha\in[-1,1]$, $\beta\in[-1,1]$, $\alpha\beta\neq \pm1$ and $\gamma\in[0,1)$. Then by subordination relation, the operator ${\rm d}_{\alpha,\beta,\gamma} f(z)$, and a special function $\phi_\delta(z)=1+\delta z/\exp(\delta z)$ ($0<\delta\leq1$), we define a new particular Ma-Minda class. We investigate some properties of this class, such as, radius problem and coefficient estimate. | ||
کلیدواژهها | ||
Unit disk؛ Analytic functions؛ Starlike function؛ Subordination؛ Radius problems؛ Coefficients problems | ||
مراجع | ||
[1] R.M. Ali, V. Ravichandran, and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), no. 1, 35–46. [2] G.E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441–484. [3] M.K. Aouf, J. Dziok, and J. Sokol, On a subclass of strongly starlike functions, Appl. Math. Lett. 24 (2011), 27–32. [4] N.E. Cho, V. Kumar, S.S. Kumar, and V. Ravichandran, Radius problems for starlike functions associated with the Sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232. [5] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer, New York, 1983. [6] F.H. Jackson, On q-functions and certain difference operator, Trans. R. Soc. Edinb. 46 (1908), 253–281. [7] F.H. Jackson, On q-definite integrals, Q. J. Pure Appl. Math. 41 (1910), 193–203. [8] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970), 159–177. [9] S. Kanas and V.S. Masih, On the behaviour of analytic representation of the generalized Pascal snail, Anal. Math. Phys. 11 (2021), 77. [10] S. Kanas, V.S. Masih, and A. Ebadian, Relations of a planar domain bounded by hyperbola with family of holomorphic functions, J. Inequal. Appl. 246 (2019), 1–14. [11] R. Kargar and L. Trojnar-Spelina, Starlike functions associated with the generalized Koebe function, Anal. Math. Phys. 11 (2021), 1–26. [12] R. Kargar, J. Soko l, A. Ebadian, and L. Trojnar-Spelina, On a class of starlike functions related with Booth lemniscate, Proc. Jangjeon Math. Soc. 21 (2018), 479–486. [13] V. Kumar, N.E. Cho, V. Ravichandran, and H.M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), 1053–1064. [14] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), 199–212. [15] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Anal. (Li, Z., Ren, F., Yang, L., Zhang, S. (eds.), Tianjin, China, 1992, Conf. Proc. Lecture Notes Anal., vol. I, International Press, Cambridge, Massachusetts, 1994, pp. 157–169. [16] R. Mendiratta, S. Nagpal, and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365–386. [17] V.S. Masih, A. Ebadian, and J. Sokol, On strongly starlike functions related to the Bernoulli lemniscate, Tamkang J. Math. 53 (2022), 1–14. [18] Z. Nehari, Conformal Mapping, McGraw-Hill: New York, NY, USA, 1952. [19] K. Piejko and J. Sokol, On convolution and q-calculus, Bol. Soc. Mat. Mex. 26 (2020), 349–359. [20] R.K. Raina and J. Sokol, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), 973–978. [21] K. Sharma, N.K. Jain, and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), 923–939. [22] J. Sokol, A certain class of starlike functions, Comput. Math. Appl. 62 (2011), 611–619. [23] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101–105. | ||
آمار تعداد مشاهده مقاله: 71 تعداد دریافت فایل اصل مقاله: 172 |