
تعداد نشریات | 21 |
تعداد شمارهها | 640 |
تعداد مقالات | 9,346 |
تعداد مشاهده مقاله | 67,981,274 |
تعداد دریافت فایل اصل مقاله | 26,222,178 |
Seismic Analysis of Concrete Buttress Dam Considering Intake Tower and Reservoir | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 9، دوره 13، شماره 1 - شماره پیاپی 37، اردیبهشت 2025، صفحه 130-150 اصل مقاله (1.11 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.31734.1897 | ||
نویسندگان | ||
Ali Mahdian Khalili1؛ Bahram Navayi Neya* 2 | ||
1Ph.D. Candidate, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran | ||
2Professor, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran | ||
تاریخ دریافت: 17 شهریور 1402، تاریخ بازنگری: 12 اردیبهشت 1403، تاریخ پذیرش: 11 مرداد 1403 | ||
چکیده | ||
This study evaluates the intake tower's effect on the buttress dam responses, considering the access bridge and reservoir under seismic loading in ANSYS using the finite element model. Wimbleball dam in England is assigned as a case study to assess the effects of different characteristics of the system components on seismic responses. Some parameters were applied, such as the presence of the intake tower and access bridge, reservoir water level, intake tower height, and internal water level. Nine cases with and without intake towers and access bridges have been studied by raising the reservoir water level, intake tower height, and internal water level, resulting in three-dimensional seismic analyses. Circular frequencies, crest displacements, and heel stresses of the dam have been presented for current cases. The interaction between the reservoir, dam, and intake tower can alter the case's stiffness and consequently change its frequencies. The modal analysis responses presented that the case's frequencies were reduced by raising the reservoir water level by up to 40% and increasing the intake tower height by up to 19%. The seismic results show that the heel stresses of the middle buttress increase by raising the reservoir water level by up to 39%. For constant water levels in the reservoir and tower, displacements and stresses of the middle buttress increased by increasing the intake tower height by up to 3% and 43%, respectively. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Concrete buttress dam؛ Seismic responses؛ Intake tower؛ Wimbleball dam؛ Finite element method | ||
مراجع | ||
[1] Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys (Technical Note). Int J Eng 2020;33. doi:10.5829/ije.2020.33.03c.05.
[2] Prakash G, Dugalam R, Barbosh M, Sadhu A. Recent advancement of concrete dam health monitoring technology: A systematic literature review. Structures 2022;44:766–84. doi:10.1016/j.istruc.2022.08.021.
[3] Ghannadi P, Kourehli SS, Mirjalili S. The application of PSO in structural damage detection: an analysis of the previously released publications (2005–2020). Frat Ed Integrita Strutt 2022;16:460–89. doi:10.3221/IGF-ESIS.62.32.
[4] Ghannadi P, Kourehli SS, Mirjalili S. A review of the application of the simulated annealing algorithm in structural health monitoring (1995-2021). Frat Ed Integrita Strutt 2023;17:51–76. doi:10.3221/IGF-ESIS.64.04.
[5] Ghannadi P, Kourehli SS, Nguyen A. The Differential Evolution Algorithm. Data Driven Methods Civ. Struct. Heal. Monit. Resil., Boca Raton: CRC Press; 2023, p. 14–57. doi:10.1201/9781003306924-2.
[6] Soleymani A, Saffari H. Seismic improvement of structures using hybrid self-centring dampers and rocking core. Structures 2024;61:106032. doi:10.1016/j.istruc.2024.106032.
[7] Millán MA, Young YL, Prévost JH. Seismic response of intake towers including dam–tower interaction. Earthq Eng Struct Dyn 2009;38:307–29. doi:10.1002/eqe.851.
[8] Bayraktar A, Sevim B, Can Altunişik A. Finite element model updating effects on nonlinear seismic response of arch dam–reservoir–foundation systems. Finite Elem Anal Des 2011;47:85–97. doi:10.1016/j.finel.2010.09.005.
[9] 4- Seismic Behavior Assessment of Concrete Elevated Water Tanks.pdf n.d. doi:10.22075/JRCE.2013.8.
[10] Zhang HY, Zhang LJ. Tuned mass damper system of high-rise intake towers optimized by improved harmony search algorithm. Eng Struct 2017;138:270–82. doi:10.1016/j.engstruct.2017.02.011.
[11] Pirhadi P, Alembagheri M. The influence of bridge–tower interaction on the dynamic behavior of intake–outlet towers. SN Appl Sci 2019;1:1601. doi:10.1007/s42452-019-1648-0.
[12] Chen X, Liu Y, Zhou B, Yang D. Seismic response analysis of intake tower structure under near-fault ground motions with forward-directivity and fling-step effects. Soil Dyn Earthq Eng 2020;132. doi:10.1016/j.soildyn.2020.106098.
[13] Teymouri E, Abbasi S. Seismic Evaluation of Intake Tower Behavior with Different Types of Concrete Collars. J Vib Eng Technol 2022;10:3037–58. doi:10.1007/s42417-022-00537-5.
[14] Rasa AY, Budak A, Düzgün OA. Seismic Performance Evaluation of Concrete Gravity Dams Using an Efficient Finite Element Model. J Vib Eng Technol 2023. doi:10.1007/s42417-023-01002-7.
[15] Zheng X, Shen Y, Zong X, Su H, Zhao X. Dynamic Response Analysis of Intake Tower-Hydrodynamic Coupling Boundary Based on SV Wave Spatial Incidence. Buildings 2023;13. doi:10.3390/buildings13071704.
[16] Liaw C, Chopra AK. Dynamics of towers surrounded by water. Earthq Eng Struct Dyn 1974;3:33–49. doi:10.1002/eqe.4290030104.
[17] Liaw C ‐Y., Chopra AK. Earthquake analysis of axisymmetric towers partially submerged in water. Earthq Eng Struct Dyn 1974;3:233–48. doi:10.1002/eqe.4290030303.
[18] Goyal A, Chopra AK. Earthquake analysis of intake‐outlet towers including tower‐water‐foundation‐soil interaction. Earthq Eng Struct Dyn 1989;18:325–44. doi:10.1002/eqe.4290180303.
[19] Goyal A, Chopra AK. Hydrodynamic and Foundation Interaction Effects in Dynamics of Intake Towers: Earthquake Responses. J Struct Eng 1989;115:1386–95. doi:10.1061/(ASCE)0733-9445(1989)115:6(1386).
[20] Goyal A, Chopra AK. Hydrodynamic and Foundation Interaction Effects in Dynamics of Intake Towers: Frequency Response Functions. J Struct Eng 1989;115:1371–85. doi:10.1061/(ASCE)0733-9445(1989)115:6(1371).
[21] Goyal A, Chopra AK. Simplified Evaluation of Added Hydrodynamic Mass for Intake Towers. J Eng Mech 1989;115:1393–412. doi:10.1061/(asce)0733-9399(1989)115:7(1393).
[22] Daniell WE, Taylor CA. Developing a numerical model for a UK intake tower seismic assessment. Proc Inst Civ Eng Water Marit Eng 2003;156:63–72. doi:10.1680/wame.2003.156.1.63.
[23] Daniell WE, Taylor CA. Full‐scale dynamic testing and analysis of a reservoir intake tower. Earthq Eng Struct Dyn 1994;23:1219–37. doi:10.1002/eqe.4290231105.
[24] Alembagheri M. Earthquake response of solitary slender freestanding intake towers. Soil Dyn Earthq Eng 2016;90:1–14. doi:10.1016/j.soildyn.2016.08.024.
[25] Aghaeipoor M, Alembagheri M. Seismic Damage of Submerged Intake Tower under the Sequence of Mainshocks and Aftershocks. J Earthq Eng 2022;26:6893–917. doi:10.1080/13632469.2021.1927898.
[26] 11- Dynamic Analysis of Dam-Reservoir-Intake Tower Considering Sediments Absorption.pdf n.d. doi:https://doi.org/10.3217/978-3-85125-564-5-028.
[27] Teymouri E, Abbasi S. Study of the effects of adding vertical stiffeners on the frequency and seismic behavior of the cylindrical intake tower, considering the interaction of water and structure. Asian J Civ Eng 2023;24:559–78. doi:10.1007/s42107-022-00518-9.
[28] Ghaemmaghami AR, Ghaemian M. Experimental seismic investigation of Sefid-rud concrete buttress dam model on shaking table. Earthq Eng Struct Dyn 2008;37:809–23. doi:10.1002/eqe.791.
[29] Zhang H, Jiang C, Liu S, Zhang L, Wang C, Zhang Y. Shaking-table tests of seismic responses of slender intake tower-hoist chamber systems. Eng Struct 2021;242:112517. doi:10.1016/j.engstruct.2021.112517.
[30] Malm R, Ansell A. Cracking of concrete buttress dam due to seasonal temperature variation. ACI Struct J 2011;108:13–22. doi:10.14359/51664198.
[31] Forsgren E, Berneheim I. Behavior of Swedish Concrete Buttress Dams at Sesmic Loading 2016:1–115.
[32] Ilinca C, Vârvorea R, Popovici A. Influence of Dynamic Analysis Methods on Seismic Response of a Buttress Dam. Math Model Civ Eng 2014;10:12–26. doi:10.2478/mmce-2014-0012.
[33] Doronin FL. Model Dynamic Studies on a Massive Buttress Dam Considering Structural Discontinuities. Power Technol Eng 2023;57:45–9. doi:10.1007/s10749-023-01621-w.
[34] Enzell J, Nordström E, Sjölander A, Ansell A, Malm R. Physical Model Tests of Concrete Buttress Dams with Failure Imposed by Hydrostatic Water Pressure. Water (Switzerland) 2023;15. doi:10.3390/w15203627.
[35] Li C, Song Z, Wang F, Liu Y. Analysis of the seismic response and failure evaluation of the slabs of asphalt concrete-faced rockfill dams under SV-Waves with arbitrary angles. Comput Geotech 2024;168:106125. doi:10.1016/j.compgeo.2024.106125.
[36] El‐Aidi B, Hall JF. Non‐linear earthquake response of concrete gravity dams part 1: Modelling. Earthq Eng Struct Dyn 1989;18:837–51. doi:10.1002/eqe.4290180607.
[37] El‐Aidi B, Hall JF. Non‐linear earthquake response of concrete gravity dams part 2: Behaviour. Earthq Eng Struct Dyn 1989;18:853–65. doi:10.1002/eqe.4290180608.
[38] Hamidi M, Mahdian Khalili A. Numerical Study on Effect of Vertical Shaft Geometry on Seismic Responses of Morning Glory Spillways Case Study: Alborz Dam. J Dam Hydroelectr Powerpl 2019;6:37–48.
[39] SWW_Wimbleball_2014.pdf n.d. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 27 |