
تعداد نشریات | 21 |
تعداد شمارهها | 639 |
تعداد مقالات | 9,334 |
تعداد مشاهده مقاله | 67,964,950 |
تعداد دریافت فایل اصل مقاله | 24,562,336 |
Enhancing Mechanical Properties of Sands by Using Crushed Waste Glass as Reinforcement | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 10، دوره 13، شماره 1 - شماره پیاپی 37، اردیبهشت 2025، صفحه 151-170 اصل مقاله (1.18 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.33547.2024 | ||
نویسندگان | ||
Mohammed Megrousse1؛ Youcef Mahmoudi* 1؛ Abdellah Cherif Taiba1، 2؛ Mostefa Belkhatir1، 3 | ||
1Laboratory of Material Sciences & Environment, Hassiba Ben Bouali, University of Chlef, Algeria | ||
2Laboratory of Architecture, Cities and Environment, Hassiba Ben Bouali, University of Chlef, Algeria | ||
3Alexander von Humboldt Foundation Researcher, Berlin, Germany | ||
تاریخ دریافت: 24 اسفند 1402، تاریخ بازنگری: 21 خرداد 1403، تاریخ پذیرش: 11 مرداد 1403 | ||
چکیده | ||
The published researches on the mechanical behaviour of granular soils reinforced with crushed glass particles from recycled glass waste is notably limited compared to studies involving glass powder. The disposal of waste glass presents significant environmental challenges, highlighting the need for innovative recycling solutions. This study investigates the use of crushed waste glass as a reinforcement material for sand to enhance its mechanical properties, offering a sustainable solution in geotechnical engineering. To achieve this goal, a series of direct shear experiments were conducted on three categories of river sand, each with a different mean particle size (D50 = 2.00 mm, 1.00 mm, and 0.63 mm). These sands were mixed with varying amounts of crushed waste glass (CWG = 0, 10, 20, and 30%) and subjected to three various normal stresses: 50, 200, and 400 kPa. The obtained data demonstrated clearly the combined impact of crushed waste glass and mean particle size on the angle of repose, internal friction angle, peak and residual friction angles, as well as the excess and maximum dilatancy angles for the sand-CWG mixtures. The results showed that as the crushed waste glass content (CWG) and mean particle size (D50) increased, the sand-CWG mixtures exhibited higher values of repose and internal friction angles. The study concludes that crushed waste glass can effectively reinforce sand, benefiting both waste recycling and construction material performance. These findings support sustainable civil engineering practices by reducing the environmental impact of waste glass and improving sandy soil performance. Future research should investigate the long-term durability and environmental impacts of using crushed glass in various geotechnical applications. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Crushed waste glass؛ River sand,؛ Excess and maximum friction angles؛ Mean particle size؛ Direct shear box | ||
مراجع | ||
[1] Namaei A, Arjomand MA, Aminaee A. Experimental and FDM study on geogrid-soil interaction by reformed direct shear test apparatus. J Rehabil Civ Eng 2019;7:72–87.
[2] Kundu P, Padmanabhan G, Gupta N. Evaluation of Dynamic Properties of Fiber Reinforced Sandy Soil at High Cyclic Strains. J Rehabil Civ Eng 2023;11:107–21.
[3] Heidari Forozabadi H, Khabiri MM, Barkhordari Bafghi K, Miti Ku DA. Use of ceramic-industry wastewater in sandy subgrade stabilization by deep mixing method. J Rehabil Civ Eng 2023;11:1–17.
[4] Ghareh S, Akhlaghi F, Yazdani K. A Study on the Effects of Waste Rubber Tire Dimensions on Fine-Grained Soil Behavior. J Rehabil Civ Eng 2020;8:15–33.
[5] Deng Q, Lai Z, Xiao R, Wu J, Liu M, Lu Z, et al. Effect of Waste Glass on the Properties and Microstructure of Magnesium Potassium Phosphate Cement. Materials (Basel) 2021;14:2073. doi:10.3390/ma14082073.
[6] Sun J, Wang Y, Liu S, Dehghani A, Xiang X, Wei J, et al. RETRACTED: Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr Build Mater 2021;301:124361. doi:10.1016/j.conbuildmat.2021.124361.
[7] Sherwany JH, Kakrasul JI, Han J. Effect of Waste Glass on Properties of Treated Problematic Soils. ARO-THE Sci J KOYA Univ 2023;11:180–90. doi:10.14500/aro.11284.
[8] Kazmi D, Serati M, Williams DJ, Qasim S, Cheng YP. The potential use of crushed waste glass as a sustainable alternative to natural and manufactured sand in geotechnical applications. J Clean Prod 2021;284:124762. doi:10.1016/j.jclepro.2020.124762.
[9] Kazmi D, Williams DJ, Serati M. Waste glass in civil engineering applications—A review. Int J Appl Ceram Technol 2020;17:529–54. doi:10.1111/ijac.13434.
[10] Más-López MI, García del Toro EM, Luizaga Patiño A, García LJM. Eco-Friendly Pavements Manufactured with Glass Waste: Physical and Mechanical Characterization and Its Applicability in Soil Stabilization. Materials (Basel) 2020;13:3727. doi:10.3390/ma13173727.
[11] Arrieta Baldovino J de J, dos Santos Izzo RL, da Silva ÉR, Lundgren Rose J. Sustainable Use of Recycled-Glass Powder in Soil Stabilization. J Mater Civ Eng 2020;32. doi:10.1061/(ASCE)MT.1943-5533.0003081.
[12] Fattah MY, Al-Lami AHS, Ayasrah M. Bearing Capacity of a Footing on an Expansive Unsaturated Bentonite–Sand Mixture. Geotech Geol Eng 2024;42:1761–77. doi:10.1007/s10706-023-02644-w.
[13] Fattah MY, Al-Lami AHS. Behavior and characteristics of compacted expansive unsaturated bentonite-sand mixture. J Rock Mech Geotech Eng 2016;8:629–39. doi:10.1016/j.jrmge.2016.02.005.
[14] Mahdi ZA, Al-Hassnawi NS. ASSESSMENT OF SUBGRADE SOIL IMPROVEMENT BY WASTE GLASS POWDER. Int J Civ Eng Technol 2018;9:12–21.
[15] Javed SA, Chakraborty S. Effects of waste glass powder on subgrade soil improvement. World Sci News 2020:30–42.
[16] Blayi RA, Sherwani AFH, Ibrahim HH, Faraj RH, Daraei A. Strength improvement of expansive soil by utilizing waste glass powder. Case Stud Constr Mater 2020;13:e00427. doi:10.1016/j.cscm.2020.e00427.
[17] Cabalar AF, Demir S. Geotechnical properties of a bentonite treated with waste glass grains. Arab J Geosci 2022;15:880. doi:10.1007/s12517-022-10169-4.
[18] Mohammadzadeh MA, Toufigh MM, Toufigh V. Durability and Strength of Geopolymer with Recycled Glass Powder Base for Clay Stabilization. KSCE J Civ Eng 2023;27:156–68. doi:10.1007/s12205-022-0681-5.
[19] Monkul MM, Yamamuro JA. Influence of silt size and content on liquefaction behavior of sands. Can Geotech J 2011;48:931–42. doi:10.1139/t11-001.
[20] Taibi A, Mahmoudi Y, Taiba AC, Azaiez H, Belkhatir M. INFLUENCE OF PARTICLE SIZE INDEX ON SHEAR PROPERTIES OF COHESIONLESS SOILS ADMIXTURE WITH FLY ASH BINDER. J Geoengin 2023;18.
[21] Cherif Taiba A, Mahmoudi Y, Belkhatir M. Discussion of “Effect of Barley Straw Fiber as a Reinforcement on the Mechanical Behavior of Babolsar Sand”, by Ali Vafaei et al. (2023), published in Transportation Infrastructure Geotechnology, DOI.org/10.1007/s40515-023-00281-7. Transp Infrastruct Geotechnol 2024;11:703–10. doi:10.1007/s40515-023-00302-5.
[22] Doumi K, Mahmoudi Y, Cherif Taiba A, Baille W, Belkhatir M. Influence of the Particle Size on the Flow Potential and Friction Index of Partially Saturated Sandy Soils. Transp Infrastruct Geotechnol 2022;9:606–30. doi:10.1007/s40515-021-00193-4.
[23] Hazout L, Cherif Taiba A, Mahmoudi Y, Belkhatir M. Deformation characteristics of natural river sand under compression loading incorporating extreme particle diameters impacts. Mar Georesources Geotechnol 2023;41:1156–74. doi:10.1080/1064119X.2022.2122090.
[24] Zeng K, Liu H. Effect of particle size distributions on the mechanical behavior and particle breakage of coral sands. Granul Matter 2023;25:44. doi:10.1007/s10035-023-01334-x.
[25] Taiba AC, Mahmoudi Y, Belkhatir M, Alwalan M, Almajed A, Lemboye K, et al. Reply to Discussion of “Direct Shear Characteristics of Enzymatically Cemented Sands” by Abdellah Cherif Taiba, Youcef Mahmoudi, and Mostefa Belkhatir. KSCE J Civ Eng 2023;27:2500–2. doi:10.1007/s12205-023-1499-5.
[26] Taiba AC, Mahmoudi Y, Belkhatir M. Discussion of “Experimental Study on Mechanical Behavior of Sand Improved by Polyurethane Foam”, by Ghasemi et al. (2023), Published in Experimental Techniques. DOI.org/10.1007/s40799-023-00633-5. Exp Tech 2024;48:395–8. doi:10.1007/s40799-023-00675-9.
[27] YANG J, WEI LM. Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 2012;62:1111–25. doi:10.1680/geot.11.P.062.
[28] Xiao Y, Sun Y, Yin F, Liu H, Xiang J. Constitutive Modeling for Transparent Granular Soils. Int J Geomech 2017;17. doi:10.1061/(ASCE)GM.1943-5622.0000857.
[29] Deng Y, Yilmaz Y, Gokce A, Chang CS. Influence of particle size on the drained shear behavior of a dense fluvial sand. Acta Geotech 2021;16:2071–88.
[30] Azaiez H, Taiba AC, Mahmoudi Y, Belkhatir M. Characterization of granular materials treated with fly ash for road infrastructure applications. Transp Infrastruct Geotechnol 2021;8:228–53.
[31] Cherif Taiba A, Mahmoudi Y, Azaiez H, Belkhatir M. Impact of the overall regularity and related granulometric characteristics on the critical state soil mechanics of natural sands: a state-of-the-art review. Geomech Geoengin 2023;18:299–308. doi:10.1080/17486025.2022.2044076.
[32] Wang S, Huang Y. Experimental study on the effect of particle size on the shear characteristics of large-displacement soil exposed to heat treatment: Shear fluctuation and heat degradation. Eng Geol 2022;300:106581. doi:10.1016/j.enggeo.2022.106581.
[33] Taibi A, Mahmoudi Y, Cherif Taiba A, Azaiez H, Belkhatir M. Fly Ash Effects on the Stress-Dilatancy Relation of Coarse Soils: Particle Morphology Role. Geotech Geol Eng 2023;41:2517–36. doi:10.1007/s10706-023-02412-w.
[34] Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis n.d. doi:10.1520/D6913.
[35] Rousé PC. Comparison of Methods for the Measurement of the Angle of Repose of Granular Materials. Geotech Test J 2014;37:164–8. doi:10.1520/GTJ20120144.
[36] Miura K, Maeda K, Toki S. Method of Measurement for the Angle of Repose of Sands. Soils Found 1997;37:89–96. doi:10.3208/sandf.37.2_89.
[37] Zhou YC, Xu BH, Yu AB, Zulli P. An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol 2002;125:45–54. doi:10.1016/S0032-5910(01)00520-4.
[38] Beakawi Al-Hashemi HM, Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technol 2018;330:397–417. doi:10.1016/j.powtec.2018.02.003.
[39] NF P. 94-071-1 Sols: Reconnaissance et essais-essai de cisaillement rectiligne à la boîte-Partie 1: Cisaillement direct. Ed AFNOR Boutique, Saint-Denis, Fr 1994.
[40] Disfani MM, Arulrajah A, Bo MW, Hankour R. Recycled crushed glass in road work applications. Waste Manag 2011;31:2341–51.
[41] Disfani MM, Arulrajah A, Bo MW, Sivakugan N. Environmental risks of using recycled crushed glass in road applications. J Clean Prod 2012;20:170–9. doi:10.1016/j.jclepro.2011.07.020.
[42] Fioravante V. On the shaft friction modelling of non-displacement piles in sand. Soils Found 2002;42:23–33.
[43] Lings ML, Dietz MS. The Peak Strength of Sand-Steel Interfaces and the Role of Dilation. Soils Found 2005;45:1–14. doi:10.3208/sandf.45.1.
[44] Afzali-Nejad A, Lashkari A, Shourijeh PT. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext Geomembranes 2017;45:54–66. doi:10.1016/j.geotexmem.2016.07.005.
[45] Azaiez H, Cherif Taiba A, Mahmoudi Y, Belkhatir M. Shear characteristics of fly ash improved sand as an embankment material for road infrastructure purpose. Innov Infrastruct Solut 2021;6:148. doi:10.1007/s41062-021-00517-w. | ||
آمار تعداد مشاهده مقاله: 712 تعداد دریافت فایل اصل مقاله: 31 |