تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,925 |
تعداد مشاهده مقاله | 66,866,203 |
تعداد دریافت فایل اصل مقاله | 7,468,898 |
Modeling and Numerical Prediction on Mechanical Behaviors of Hybrid Fiber Reinforced Polymer Bio Composites Using Fuzzy Logic Algorithm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanics of Advanced Composite Structures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
دوره 12، شماره 1 - شماره پیاپی 24، تیر 2025، صفحه 199-210 اصل مقاله (962.53 K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نوع مقاله: Research Article | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شناسه دیجیتال (DOI): 10.22075/macs.2024.33822.1648 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نویسندگان | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vinoth Viswanathan* 1؛ Sathiyamurthy Subbarayan1؛ Ananthi Narayanaswamy1؛ Devi Panneerselvam2؛ Prabhakaran Jayasankar3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1Easwari Engineering College (Autonomous), Chennai, Tamilnadu, 600089, India | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2B.S.Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamilnadu, 600048, India | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3Indian Institute of Technology, Chennai, Tamilnadu, 600036, India | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
تاریخ دریافت: 29 فروردین 1403، تاریخ بازنگری: 03 مرداد 1403، تاریخ پذیرش: 22 مرداد 1403 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چکیده | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The present study investigates the mechanical behaviors of hybrid fiber-reinforced polyester composites in developing a new strengthened material. The experiments were planned as per the design of experiments, the selected input parameters were fiber length (mm), NaOH treatment (%), and fiber weight (%) and the output parameters were tensile, flexural, and impact strength conditions. A Non-Linear Regression Modelling (NLRM) and Fuzzy logic model have been designed to predict and analyze the mechanical properties in unknown test conditions. Every input factor was categorized into three linguistic descriptors, while each output factor was classified into three linguistic categories. A triangular membership function was employed to define all these variables. The effectiveness of the nonlinear regression analysis and fuzzy logic model was evaluated through confirmatory experiments. The model predicted the mechanical results with an error of 7.19%, 5.38%, and 2.33% respectively. The proposed approach can significantly simplify real-life multi-response optimization problems, thereby reducing fabrication costs and enhancing composite fabrication efficiency. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
کلیدواژهها | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hybrid fiber؛ Polyester؛ Mechanical properties؛ Regression analysis؛ Fuzzy rule | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
اصل مقاله | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Research Article Modeling and Numerical Prediction on Mechanical Behaviors of Hybrid Fiber Reinforced Polymer Bio Composites Using Fuzzy Logic AlgorithmVinoth Viswanathan a * , Sathiyamurthy Subbarayan a, Ananthi Narayanaswamy a, Devi Panneerselvam b, Prabhakaran Jayasankar c a Easwari Engineering College (Autonomous), Chennai, Tamilnadu, 600089, India b B.S.Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamilnadu, 600048, India c Indian Institute of Technology, Chennai, Tamilnadu, 600036, India
1. Introduction In recent times, a burgeoning industrial consciousness has emerged concerning environmental impact, the diminishing reservoirs of petroleum resources, and a heightened emphasis on human health. This has precipitated a pivot in attention towards ecologically sustainable products, displacing the erstwhile emphasis on synthetic materials [1]. Based on the above-mentioned literature review, researchers encounter difficulties in optimizing various mechanical characteristics for composite formulations reinforced with natural fibers. Hybrid fiber (Paddy straw and pineapple leaf fiber) has not yet been reported in any literature study. Utilization of Agro-Wastages is used as reinforcement, turning waste into valuable resources. Hybrid Composites present a sustainable alternative to conventional materials, decreasing dependence on synthetic fibers and mitigating environmental impact. In the same context, hybrid fiber-reinforced polyester composite formulations were prepared using a semi-automatic compression molding machine based on the L27 experimental design. Literature also supports the requirement for a chemical treatment to increase bond strength in fibers so the the hybrid fibers were chemically treated in varying percentages of NaOH for the duration of 24 hrs. Further influence of different types of fiber length and fiber weight percentage was also taken in this study. The mechanical properties of tensile, flexural, and impact strengths were maximized using nonlinear regression modeling and a fuzzy dual approach. The optimal combinations of fiber length, fiber weight, and NaOH concentration % for treatment. 2.Materials and Methods
Paddy straw fibers are collected from agricultural lands to mitigate wastage globally. The gathered agricultural waste undergoes a thorough cleaning process to eliminate unwanted materials and impurities. Similarly, pineapple leaves are also collected from agricultural fields and the fibers are extracted using a double roller fiber extracting machine. Both paddy straw stems and pineapple leaves undergo a chemical treatment process to enhance fiber surface and strength. NaOH was selected for chemical treatment due to its effectiveness compared to other treatment processes [29,30]. Various NaOH concentrations (1%, 3%, and 5%) are utilized for a duration of 24 hours at room temperature. The main objective of submerging the fibers in a chemical solution is to reduce their hydrophilic behavior, resulting in better interfacial strength with the matrix. This treatment expressively improves the mechanical characteristics of the fibers. Subsequently, the fibers are meticulously cleaned with distilled water to remove any residual chemicals. The fibers are then sunlight-dried for 2 days to complete the process of enhancing their properties [38]. The matrix material used in the present study was polyester resin (thermosetting group), the accelerator (Methyl Ethyl Ketone Peroxide), and catalyst (Cobalt octoate) used as a curing agent [31]. The resin and the curing agent were purchased from Go Green Products, Chennai, India. The polyester resin properties are density -1.132 (g/cm3), viscosity @ 25°C – 470 (cp), volatile content – 36.2 (%), acid value – 25.18 (mg KOH/gm), gel time @ 25°C – 14 min [11]. Figure 1 shows chemically treated paddy straw and pineapple leaf fiber. Fig. 1. Chemically treated fibers: (a) Paddy straw, (b) Pineapple leaf fiber
The fabrication of hybrid fiber-reinforced composite preparations of chemically treated fiber (1%, 3%, 5%), fiber length (25mm, 50mm, 75mm), and fiber weight (30%, 40%, 50%) was carried out using semi-automatic compression molding machine with the mold dimensions of 300 x 300 x 3 mm [32]. The polythene sheet was located between the base plate and mold for easy removal of the composite plate. The Wax content was applied to the mold surface and the polyethylene sheet to prevent the liquid polyester from adhering to the mold and base plate surfaces. Polyester resin, combined with a catalyst and accelerator at a ratio of 1:0.015:0.015, was manually stirred for 2-3 minutes to prevent agglomeration [33]. Now, weighted fiber is placed in the bottom mold and mixed resin is poured into the entire mold uniformly in a circular way in the mold. Further, the upper die was compressed into the bottom mold, in the same context the temperature 50°C and 30 bar pressure was applied for 45 mins. After 45 mins the eject the fabricated composite laminate was placed at room temperature. 27 Laminates were fabricated in accordance with the L27 experimental design. The stepwise experimentation procedure is shown in Figure 2. Fig. 2. Stepwise procedure for experimentation methodology
The fabricated composite laminate cutting with the ASTM standard. Tensile strength tests for composite samples were conducted the ASTM D638 standard [34], utilizing a universal testing machine (UTM) with a gauge length of 100mm and a constant crosshead speed of 1.5 mm/min. The flexural test was conducted using the 3-point bending test in accordance with the ASTM D790 [35] standard on a universal testing machine. The flexural strength was performed by the following equation:
where p – Maximum load, l – Span length, b- width of the specimen, t – thickness of the specimen. The Charpy impact test is a standard method used to measure the impact strength. The test assesses the energy absorbed by a material during fracture. Which is determined according to ASTM D256-10 [36] standards using the Charpy test. In this test, a notch with a depth of 2 mm and a subtended angle of 45° is created, and the energy released upon fracturing the sample is recorded.
Design of Experiments (DOE) is a systematic approach used to determine the relationship between factors that affect a process and the resulting output of that process. Incorporating fuzzy rules into DOE involves considering uncertainty and imprecision in the factors and their levels. The assigned input variables and their level are in Table 1. Table 1. Input variables and their level
According to the full factorial design of experiments, 27 sets of interpretations were recorded and then categorized into three levels for the development of a multipurpose fuzzy model, as shown in Table 2. Table 2. Output variables and their level
The tensile, flexural, and impact strength for 27 polyester composite laminates on different settings of input parameters using DOE were recorded and reported in Table 3. Table 3. Experimental results using Design of experiments
Nonlinear regression in statistics involves modeling observational data using a function that is a nonlinear combination of model parameters and depends on one or more independent variables [25].
where u=1, 2, 3, k, and k represent the number in the factorial experiment. The term xiu represents the level of the ith factor in the uth experiment. The function φ is called the response surface. The residual εu measures the experimental error in the uth observation. The first order polynomials formula,
The second-order polynomial, specifically known as the Quadratic response surface has 3−x variables, and takes the form:
"εu" is a term representing additional sources of variability not accounted for. This encompasses measurement errors in the response, other inherent sources of variation in the process or system, and so forth. Quadratic design models were chosen based on superior values of the coefficient of correlation and F-test for all responses in this study using statistical software.
Fuzzy logic simulates human decision-making by employing linguistic reasoning, integrating a mathematical theory that combines multi-valued logic, probability theory, and artificial intelligence methods. It has been proven to be effective in addressing complex problems. Mamdani and Sugeno represent two distinct types of fuzzy inference systems (FISs) within the fuzzy logic toolbox. These two types of inference systems vary in the manner in which they specify outputs. The Mamdani-type fuzzy inference produces a fuzzy set output, whereas the Sugeno-type inference provides either a constant output or a linear mathematical expression [37]. In this present investigation, Mamdani FIS was used and the structure of the fuzzy logic system is shown in Figure 3. Fig. 3. Fuzzy model for Mechanical strength parameters Meaningful linguistic statements are selected for each variable and represented using appropriate fuzzy sets, such as "low," "medium," and "high." The concept of fuzzy reasoning for a three-input–three-output multi-response fuzzy logic model is described as follows. The fuzzy rule base consists of a group of IF-THEN statements with three inputs, x1, x2, and x3, and three outputs y1, y2, and y3, Rule 1: If x1 is A1 and x2 is B1 and x3 is C1 then y1 is P1 and y2 is Q1 and y3 is R1 Rule 2: If x1 is A2 and x2 is B2 and x3 is C2 then y1 is P2 and y2 is Q2 and y3 is R2 Rule n: If x1 is An and x2 is Bn and x3 is Cn then y1 is Pn and y2 is Qn and y3 is Rn (4) An, Bn, and Cn function as input membership functions for the fuzzy models, while Pn, Qn, and Rn serve as output membership functions for the multi-response fuzzy models. Triangular and trapezoidal membership functions were applied to both input and output conditions in the fuzzy model. The generated membership function plots for input and output variables are depicted in Figures 4 and 5, respectively. The triangular membership function (trimf) is the most basic, created using three points to form a triangle, while the trapezoidal membership function (trapmf) is a truncated triangle defined by four points. The Fuzzy Rule Editor is employed to generate 27 sets of rules based on the specified input and output variables using the FIS editor. Within the Fuzzy model, these rules are organized in such a way that the first three columns correspond to the input variables, while the remaining columns pertain to the output variables. These rules provide a comprehensive definition of the Fuzzy Inference System, encompassing variables, membership functions, and the essential rules for computing intermediate mechanical strength parameters. The Fuzzy Rule Viewer illustrates the entire fuzzy inference process, presenting each row as an if-then rule following a specific syntax. In this representation, each column corresponds to a variable, and the rule numbers are positioned next to each row. The rule viewer provides a detailed microview of the Fuzzy Inference System, showcasing every calculation in great detail. Furthermore, the Surface Viewer displays the comprehensive output of the fuzzy system, encompassing the entire span of the input set. Fig. 4. (a-c) Input parameters and their membership plots Fig. 5. (a-c) Output parameters and their membership plots
3. Results and Discussion
In statistics, the coefficient of determination, R-squared (R2), signifies the portion of variability in a dataset that the statistical model can account for. R2 values of 0.90, 0.98, and 0.94 were achieved for the fiber length, NaOH treatment, and fiber weight models, respectively. The scientific relationships for correlating the input process variables are derived from the coefficients obtained through the use of Design Expert software. The terms l, n, and w are Fiber length, NaOH treatment, and Fiber weight whereas Ts, Fs, and Is represents Tensile strength, Flexural strength, and Impact strength respectively. Ts = -26.35 +1.45928 l +1.78056 n - 0.124028 w (5) The relevance of adding new model terms beyond those in the original model was assessed using the F-value. It was evident from a decreased p-value (Probability > F) that the addition of second-order variables enhanced the model. The coefficients derived from the Design Expert software output correspond mathematically to the flexural strength (Fs) and the process variables under consideration. Fs = - 8.45185+1.73217 l + 3.825 n - 0.632639 w (6) The coefficients produced by the Design Expert software output are used to establish the mathematical relationship between the Impact strength (Is) and the process variables under consideration. Is = 72.87644 + 0.663522 l + 3.30389 n (7)
The input and output variables undergo fuzzification and are expressed using membership functions. The output variables are categorized into three levels each, resulting in a formulation of 27 fuzzy rules (Table 4).
Table 4. Fuzzy set of rules
The fuzzy rule viewer for the confirmation test is depicted in Figures 6 and 7. To validate the fuzzy system, an experimental value (Fiber length 75, NaOH treatment 5%, and fiber weight 50%) was provided, yielding output values (Tensile strength 37.5 MPa, Flexural strength 51.7 MPa, and Impact strength 74.2 KJ/m2) that closely match the experimental results.
Fig. 6. Fuzzy rule reading Fig. 7. Fuzzy rule viewer of mechanical strength parameters The interaction effects of input parameters on the responses were examined using surface plots. The interaction effects of Fiber length, NaOH treatment, and Fiber weight on Tensile strength, Flexural strength, and Impact strength are shown in Figures 8,9,10. Fig. 8. Surface view plots for tensile strength: (a) NaOH treatment vs Fiber length, (b) Fiber weight vs Fiber length, Fig. 9. Surface view plots for Flexural strength: (a) NaOH treatment vs Fiber length, (b) Fiber weight vs Fiber length, Fig. 10. Surface view plots for Impact strength: (a) NaOH treatment vs Fiber length, (b) Fiber weight vs Fiber length,
Confirmation experiments were conducted under six distinct sets of input conditions. The experimental data and the predicted values obtained from both the mathematical model and fuzzy logic were compared (see Table 5). % of error = (Experimental value - Predicted value) × 100 / Experimental value It was obtained that the average absolute error percentages for input parameters in the Nonlinear regression model are shown in Table 6. Tensile strength = 7.19 % Flexural strength = 5.38 % Impact strength = 2.33 % It was obtained that the average absolute error percentages for input parameters in the fuzzy model are shown in Table 6. Tensile strength = 6.61 % Flexural strength = 6.22 % Impact strength = 9.09 %
Table 5. Comparison of experimental values with predicted values
Table 6. Comparison of error percentage
The comparisons of experimental and predicted values of Tensile, Flexural, and Impact strength are shown in Figures 11, 12, and 13 respectively. The accuracy of NLRM (Non-linear regression model) compared with fuzzy model prediction was studied using these validation plots. Include surface plots comparing experimental and predicted values to visually assess the model’s performance across different conditions. Fig. 11. Comparison of experimental and predicted values of Tensile strength Fig. 12. Comparison of experimental and predicted values of Flexural strength Fig. 13. Comparison of experimental and predicted values of Impact strength 4.Conclusions This paper showcases the optimization of diverse mechanical characteristics in hybrid fiber-reinforced polyester composite formulations. The methodology integrates nonlinear regression analysis and fuzzy logic to facilitate the identification of optimal input fabrication parameters. A total of 27 experiments were performed to evaluate different input parameter configurations, during which multiple mechanical properties were documented. The input fabrication parameters encompassed hybrid fiber length (mm), NaOH concentration in a chemical solution (%), and fiber weight percentage (%). The corresponding output characteristics included tensile strength, flexural strength, and impact strength. The study analyzed the interaction effects and significance of variables on the outputs through surface plots. Additionally, a systematic fuzzy model was formulated to predict the responses within the specified range of conditions. The optimal input parameter levels that maximize tensile strength, flexural strength, and impact strength are as follows: a fiber length of 75, NaOH concentration at 5%, and a fiber weight of 50%. The Nonlinear Regression Model (NLRM) accurately predicted the mechanical characteristics and validation results indicated an error percentage of 4.96% for all the models, whereas the error percentage ranged up to 7.30% in the fuzzy model. This suggested approach has the potential to significantly simplify the complexity inherent in real-life multi-response optimization problems, ultimately reducing fabrication costs and enhancing efficiency in composite fabrication. In this composite can be used in a wide range of applications including automotive parts, building materials, packaging, furniture, and consumer goods, demonstrating their versatility and broad market potential. The biodegradability of many agricultural fibers improves the composites' environmental friendliness and aids in waste disposal at the end of their life cycle. AcknowledgmentThe authors would like to thank Dr Krishna Kanth Pulicherla, Scientist, TDT Division, DST, Delhi, India, for their valuable suggestion to do this work, and also the authors wish to express their sincere thanks to E. Devarajan, farmer, Chinnakavanam, Thiruvallur (District), Tamilnadu, India, for the collection of paddy straw fibers. Funding StatementThe author(s) disclosed receipt of the following financial support for the research, authorship, and publication of this article. This article is supported by the scheme of Innovation, Technology Development, and Deployment (1819), Department of Science and Technology - Delhi. Ref no: DST/TDT/WM/2019/78 Consortia (G). Conflicts of InterestThe author declares that there is no conflict of interest regarding the publication of this article. References[1] Nimanpure S, Hashmi SA, Kumar R, Nigrawal A, Bhargaw HN, Naik A, 2018. Sisal fibril epoxy composite a high strength electrical insulating material. Polymer Composites, 39(S4), pp. E2175-E2184. [2] Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH, 2021. A review on properties and application of bio-based poly (butylene succinate). Polymers, 13(9) p.1436. [3] Platnieks O, Gaidukovs S, Thakur VK, Barkane A, Beluns S. Bio-based poly (butylene succinate), 2021. Recent progress, challenges and future opportunities. European Polymer Journal, 161, p.110855. [4] Hashmi SA, Naik A, Chand N, Sharma J, Sharma P, 2011. Development of environment friendly hybrid layered sisal–glass–epoxy composites. Composite Interfaces, 18(8), pp. 671-83, [5] Vinoth, V., Sathiyamurthy, S., Saravanakumar, S. and Senthilkumar, R., 2024. Integrating response surface methodology and machine learning for analyzing the unconventional machining properties of hybrid fiber‐reinforced composites. Polymer Composites, 45(7), pp. 6077-6092. https://doi.org/10.1002/pc.28180 [6] Mohammed L., Ansari M.N., Pua G., Jawaid M., Islam M.S., 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of polymer science, 2015(1), p.243947. [7] Karimah A., Ridho M.R., Munawar S.S., Adi D.S., Damayanti R., Subiyanto B., Fatriasari W., Fudholi A., 2021. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of materials research and technology, 13, pp. 2442-2458. [8] Jayan, J.S., Appukuttan, S., Wilson, R., Joseph, K., George, G. and Oksman, K., 2021. An introduction to fiber reinforced composite materials. In Fiber reinforced composites (pp. 1-24). Woodhead Publishing. [9] Mahesh, V., Joladarashi, S. and Kulkarni, S.M., 2021. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), pp. 257-277. [10] Saravanakumar, S., Sathiyamurthy, S., Ananthi, N. and Devi, P., 2023. Optimization of drilling characteristics of Al2O3 and boiled eggshell filler-added hybrid bio composite from agriculture residue. Biomass Conversion and Biorefinery, pp. 1-15. [11] Sathiyamurthy, S., Vinoth, V., Ananthi, N. and Devi, P., 2024. The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(1), pp. 463-473. [12] Saravanakumar, S., Sathiyamurthy, S., Vinoth, V. and Devi, P., 2024. Effect of alumina on epoxy composites with banana fiber: mechanical, water resistance and degradation property analysis. Fibers and Polymers, 25(1), pp. 275-287. [13] Sathiyamurthy, S., Vinoth, V., Saravanakumar, S. and Devi, P., 2023. Investigation on mechanical behaviour of calcium carbonate and groundnut Shell filler added Cocos Nucifera Fiber reinforced polyester composites. ARPN Journal of Engineering and Applied Science, 18(12), pp. 1425-1432. [14] Thiruchitrambalam, M., Athijayamani, A., Sathiyamurthy, S. and Thaheer, A.S.A., 2010. A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite. Journal of Natural Fibers, 7(4), pp. 307-323. [15] Rajeshkumar, G., Seshadri, S.A., Ramakrishnan, S., Sanjay, M.R., Siengchin, S. and Nagaraja, K.C., 2021. A comprehensive review on natural fiber/nano‐clay reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 42(8), pp. 3687-3701. [16] Nurazzi, N.M., Harussani, M.M., Aisyah, H.A., Ilyas, R.A., Norrrahim, M.N.F., Khalina, A. and Abdullah, N., 2021. Treatments of natural fiber as reinforcement in polymer composites-a short review. Functional Composites and Structures, 3(2), p.024002. [17] Vinoth, V., Sathiyamurthy, S., Ananthi, N. and Elaiyarasan, U., 2022. Chemical treatments and mechanical characterisation of natural fibre reinforced composite materials-a review. International Journal of Materials Engineering Innovation, 13(3), pp. 208-221. [18] Gholampour, A. and Ozbakkaloglu, T., 2020. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), pp.829-892. [19] Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F., 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), pp.2883-2892. [20] Ali-Eldin, S.S., Abd El-Moezz, S.M., Megahed, M. and Abdalla, W.S., 2021. Study of hybridization effect of new developed rice straw mat/glass fiber reinforced polyester composite. Journal of Natural Fibers, 18(8), pp. 1194-1206. [21] Megahed, M., Ali-Eldin, S.S., Abd El Moezz, S.M. and Abdalla, W.S., 2020. Synthesis of developed rice straw sheets and glass fiber-reinforced polyester composites. Journal of Composite Materials, 54(23), pp.3381-3394. [22] Motaleb, K.A., Shariful Islam, M. and Hoque, M.B., 2018. Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. International Journal of Biomaterials, 2018(1), p.7384360. [23] Soundhar, A., Rajesh, M., Jayakrishna, K., Sultan, M.T.H. and Shah, A.U.M., 2019. Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites, 5(1), pp.1-12. [24] Balasubramanian, K., Sultan, M.T.H., Cardona, F. and Rajeswari, N., 2016, October. Machining analysis of natural fibre reinforced composites using fuzzy logic. In IOP Conference Series: Materials Science and Engineering (Vol. 152, No. 1, p. 012051). IOP Publishing. [25] Thirumal, P., Amirthagadeswaran, K.S. and Jayabal, S., 2015. Fuzzy rule based prediction of IAQ characteristics in air conditioned car. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 39(M2), pp.437-450. [26] Sinha, A.K., Narang, H.K. and Bhattacharya, S., 2021. Experimental determination, modelling and prediction of sliding wear of hybrid polymer composites using RSM and fuzzy logic. Arabian Journal for Science and Engineering, 46, pp.2071-2082. [27] Gangwar, S., Dubey, N.K. and Pathak, V.K., 2022. Experimental investigation and multi-objective optimization of multiple mechanical characteristics for chemically treated kenaf fibre reinforced epoxy composite using grey fuzzy logic. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(1), pp.166-179. [28] Guo, A., Liu, C., Li, S., Zhou, X., Wang, J., Wang, S., Qu, P. and Hu, Y., 2022. Water absorption rates and mechanical properties of material extrusion-printed continuous carbon fiber-reinforced nylon composites. Journal of Materials Research and Technology, 21, pp. 3098-3112. [29] Vinoth, V., Sathiyamurthy, S., Ananthi, N., and Jayabal, S., 2024. Mechanical characterization and study on morphological properties: Natural and agro waste utilization of reinforced polyester hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(19), pp. 9577-9588. [30] Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I. and Sillanpää, M., 2020. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, pp. 393-415. [31] Naguib, H.M., Kandil, U.F., Hashem, A.I. and Boghdadi, Y.M., 2015. Effect of fiber loading on the mechanical and physical properties of “green” bagasse–polyester composite. Journal of Radiation Research and Applied Sciences, 8(4), pp.544-548. [32] Ramprasath, R., Jayabal, S. and Sathiyamurthy, S., 2014. Optimization of mechanical behaviors of red mud particulated coir–vinyl ester composites using intuitive analysis based on response surface methodology and simulated annealing. Transactions of the Indian Institute of Metals, 67(6), pp.971-977. [33] Jayabal, S., Sathiyamurthy, S., Loganathan, K.T. and Kalyanasundaram, S., 2012. Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Materials Science, 35(4), pp.567-574. [34] Saravanakumar, S., Sathiyamurthy, S., and Vinoth, V., 2024. Enhancing machining accuracy of banana fiber-reinforced composites with ensemble machine learning. Measurement, 235, p.114912. [35] Ashok, K.G., Kalaichelvan, K. and Damodaran, A., 2022. Effect of nano fillers on mechanical properties of luffa fiber epoxy composites. Journal of Natural Fibers, 19(4), pp.1472-1489. [36] Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014. [37] Saravanakumar, S., Sathiyamurthy, S., Ananthi, N. and Devi, P., 2023. Optimization of drilling characteristics of Al2O3 and boiled eggshell filler-added hybrid bio composite from agriculture residue. Biomass Conversion and Biorefinery, pp.1-15. [38] Vinod, A., Sanjay, M. R., Siengchin, S., & Fischer, S. 2021. Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: influence of surface modification techniques. Construction and Building Materials, 303, p.124509. [39] Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, p.120978. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مراجع | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[1] Nimanpure S, Hashmi SA, Kumar R, Nigrawal A, Bhargaw HN, Naik A, 2018. Sisal fibril epoxy composite a high strength electrical insulating material. Polymer Composites, 39(S4), pp. E2175-E2184. [2] Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH, 2021. A review on properties and application of bio-based poly (butylene succinate). Polymers, 13(9) p.1436. [3] Platnieks O, Gaidukovs S, Thakur VK, Barkane A, Beluns S. Bio-based poly (butylene succinate), 2021. Recent progress, challenges and future opportunities. European Polymer Journal, 161, p.110855. [4] Hashmi SA, Naik A, Chand N, Sharma J, Sharma P, 2011. Development of environment friendly hybrid layered sisal–glass–epoxy composites. Composite Interfaces, 18(8), pp. 671-83, [5] Vinoth, V., Sathiyamurthy, S., Saravanakumar, S. and Senthilkumar, R., 2024. Integrating response surface methodology and machine learning for analyzing the unconventional machining properties of hybrid fiber‐reinforced composites. Polymer Composites, 45(7), pp. 6077-6092. https://doi.org/10.1002/pc.28180 [6] Mohammed L., Ansari M.N., Pua G., Jawaid M., Islam M.S., 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of polymer science, 2015(1), p.243947. [7] Karimah A., Ridho M.R., Munawar S.S., Adi D.S., Damayanti R., Subiyanto B., Fatriasari W., Fudholi A., 2021. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of materials research and technology, 13, pp. 2442-2458. [8] Jayan, J.S., Appukuttan, S., Wilson, R., Joseph, K., George, G. and Oksman, K., 2021. An introduction to fiber reinforced composite materials. In Fiber reinforced composites (pp. 1-24). Woodhead Publishing. [9] Mahesh, V., Joladarashi, S. and Kulkarni, S.M., 2021. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), pp. 257-277. [10] Saravanakumar, S., Sathiyamurthy, S., Ananthi, N. and Devi, P., 2023. Optimization of drilling characteristics of Al2O3 and boiled eggshell filler-added hybrid bio composite from agriculture residue. Biomass Conversion and Biorefinery, pp. 1-15. [11] Sathiyamurthy, S., Vinoth, V., Ananthi, N. and Devi, P., 2024. The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(1), pp. 463-473. [12] Saravanakumar, S., Sathiyamurthy, S., Vinoth, V. and Devi, P., 2024. Effect of alumina on epoxy composites with banana fiber: mechanical, water resistance and degradation property analysis. Fibers and Polymers, 25(1), pp. 275-287. [13] Sathiyamurthy, S., Vinoth, V., Saravanakumar, S. and Devi, P., 2023. Investigation on mechanical behaviour of calcium carbonate and groundnut Shell filler added Cocos Nucifera Fiber reinforced polyester composites. ARPN Journal of Engineering and Applied Science, 18(12), pp. 1425-1432. [14] Thiruchitrambalam, M., Athijayamani, A., Sathiyamurthy, S. and Thaheer, A.S.A., 2010. A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite. Journal of Natural Fibers, 7(4), pp. 307-323. [15] Rajeshkumar, G., Seshadri, S.A., Ramakrishnan, S., Sanjay, M.R., Siengchin, S. and Nagaraja, K.C., 2021. A comprehensive review on natural fiber/nano‐clay reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 42(8), pp. 3687-3701. [16] Nurazzi, N.M., Harussani, M.M., Aisyah, H.A., Ilyas, R.A., Norrrahim, M.N.F., Khalina, A. and Abdullah, N., 2021. Treatments of natural fiber as reinforcement in polymer composites-a short review. Functional Composites and Structures, 3(2), p.024002. [17] Vinoth, V., Sathiyamurthy, S., Ananthi, N. and Elaiyarasan, U., 2022. Chemical treatments and mechanical characterisation of natural fibre reinforced composite materials-a review. International Journal of Materials Engineering Innovation, 13(3), pp. 208-221. [18] Gholampour, A. and Ozbakkaloglu, T., 2020. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), pp.829-892. [19] Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F., 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), pp.2883-2892. [20] Ali-Eldin, S.S., Abd El-Moezz, S.M., Megahed, M. and Abdalla, W.S., 2021. Study of hybridization effect of new developed rice straw mat/glass fiber reinforced polyester composite. Journal of Natural Fibers, 18(8), pp. 1194-1206. [21] Megahed, M., Ali-Eldin, S.S., Abd El Moezz, S.M. and Abdalla, W.S., 2020. Synthesis of developed rice straw sheets and glass fiber-reinforced polyester composites. Journal of Composite Materials, 54(23), pp.3381-3394. [22] Motaleb, K.A., Shariful Islam, M. and Hoque, M.B., 2018. Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. International Journal of Biomaterials, 2018(1), p.7384360. [23] Soundhar, A., Rajesh, M., Jayakrishna, K., Sultan, M.T.H. and Shah, A.U.M., 2019. Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites, 5(1), pp.1-12. [24] Balasubramanian, K., Sultan, M.T.H., Cardona, F. and Rajeswari, N., 2016, October. Machining analysis of natural fibre reinforced composites using fuzzy logic. In IOP Conference Series: Materials Science and Engineering (Vol. 152, No. 1, p. 012051). IOP Publishing. [25] Thirumal, P., Amirthagadeswaran, K.S. and Jayabal, S., 2015. Fuzzy rule based prediction of IAQ characteristics in air conditioned car. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 39(M2), pp.437-450. [26] Sinha, A.K., Narang, H.K. and Bhattacharya, S., 2021. Experimental determination, modelling and prediction of sliding wear of hybrid polymer composites using RSM and fuzzy logic. Arabian Journal for Science and Engineering, 46, pp.2071-2082. [27] Gangwar, S., Dubey, N.K. and Pathak, V.K., 2022. Experimental investigation and multi-objective optimization of multiple mechanical characteristics for chemically treated kenaf fibre reinforced epoxy composite using grey fuzzy logic. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(1), pp.166-179. [28] Guo, A., Liu, C., Li, S., Zhou, X., Wang, J., Wang, S., Qu, P. and Hu, Y., 2022. Water absorption rates and mechanical properties of material extrusion-printed continuous carbon fiber-reinforced nylon composites. Journal of Materials Research and Technology, 21, pp. 3098-3112. [29] Vinoth, V., Sathiyamurthy, S., Ananthi, N., and Jayabal, S., 2024. Mechanical characterization and study on morphological properties: Natural and agro waste utilization of reinforced polyester hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(19), pp. 9577-9588. [30] Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I. and Sillanpää, M., 2020. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, pp. 393-415. [31] Naguib, H.M., Kandil, U.F., Hashem, A.I. and Boghdadi, Y.M., 2015. Effect of fiber loading on the mechanical and physical properties of “green” bagasse–polyester composite. Journal of Radiation Research and Applied Sciences, 8(4), pp.544-548. [32] Ramprasath, R., Jayabal, S. and Sathiyamurthy, S., 2014. Optimization of mechanical behaviors of red mud particulated coir–vinyl ester composites using intuitive analysis based on response surface methodology and simulated annealing. Transactions of the Indian Institute of Metals, 67(6), pp.971-977. [33] Jayabal, S., Sathiyamurthy, S., Loganathan, K.T. and Kalyanasundaram, S., 2012. Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Materials Science, 35(4), pp.567-574. [34] Saravanakumar, S., Sathiyamurthy, S., and Vinoth, V., 2024. Enhancing machining accuracy of banana fiber-reinforced composites with ensemble machine learning. Measurement, 235, p.114912. [35] Ashok, K.G., Kalaichelvan, K. and Damodaran, A., 2022. Effect of nano fillers on mechanical properties of luffa fiber epoxy composites. Journal of Natural Fibers, 19(4), pp.1472-1489. [36] Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014. [37] Saravanakumar, S., Sathiyamurthy, S., Ananthi, N. and Devi, P., 2023. Optimization of drilling characteristics of Al2O3 and boiled eggshell filler-added hybrid bio composite from agriculture residue. Biomass Conversion and Biorefinery, pp.1-15. [38] Vinod, A., Sanjay, M. R., Siengchin, S., & Fischer, S. 2021. Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: influence of surface modification techniques. Construction and Building Materials, 303, p.124509. [39] Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, p.120978. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آمار تعداد مشاهده مقاله: 96 تعداد دریافت فایل اصل مقاله: 106 |