
تعداد نشریات | 21 |
تعداد شمارهها | 621 |
تعداد مقالات | 9,150 |
تعداد مشاهده مقاله | 67,461,077 |
تعداد دریافت فایل اصل مقاله | 7,996,509 |
Necessary conditions for vector-valued optimization problems on Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 14، دوره 16، شماره 7، مهر 2025، صفحه 173-184 اصل مقاله (412.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.33443.4986 | ||
نویسندگان | ||
Nader Kanzi* ؛ Mahboubeh Ansari Haghighi | ||
Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran | ||
تاریخ دریافت: 15 اسفند 1402، تاریخ بازنگری: 20 فروردین 1403، تاریخ پذیرش: 27 فروردین 1403 | ||
چکیده | ||
In this paper, the class of nonconvex vector-valued optimization problems with inequality constraints is considered. We introduce two constraint qualifications and derive the weak and strong Karush-Kuhn-Tucker type of necessary conditions for a (weakly) efficient solution to the considered problem. All results are given in terms of Dini directional derivative and Clarke subdifferential. | ||
کلیدواژهها | ||
Vector-valued function؛ Optimality conditions؛ Constraint qualification؛ Clarke subdifferential | ||
مراجع | ||
[1] F.H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer, Heidelberg 2013. [2] M. Hrgott, Multicriteria Optimization, Springer, Berlin, 2005. [3] G. Giorgi, A. Gwirraggio, and J. Thierselder, Mathematics of Optimization: Smooth and Nonsmooth Cases, Elsevier, Amsterdam, 2004. [4] M.A. Goberna and N. Kanzi, Optimality conditions in convex multiobjective SIP, Math. Programm. 164 (2017), 167—191. [5] R. Hettich and O. Kortanek, Semi-infinite programming: theory, methods, and applications, SIAM Rev. 35 (1993), 380–429. [6] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms. I., Fundamentals, Springer, Berlin, 1993. [7] N. Kanzi, On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data, Optim. Lett. 9 (2015), 1121–1129. [8] N. Kanzi, Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems, J. Math. Exten. 9 (2015), 45–56. [9] N. Kanzi, J. Shaker Ardekani, and G. Caristi, Optimality, scalarization and duality in linear vector semi-infinite programming, Optimization 67 (2018), 523—536. [10] N. Kanzi, Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semiinfinite programming, Iran. J. Sci. Technol. Trans. A: Sci. 42 (2017), 1537-–1544. [11] N. Kanzi, Necessary optimality conditions for nonsmooth semi-infinite programming problems, J. Glob. Optim. 49 (2011), 713—725. [12] N. Kanzi, Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints, SIAM J. Optim. 24 (2014), 559-–572. [13] X.F. Li, Constraint qualifications in nonsmooth multiobjective optimization, J. Optim. Theory Appl. 106 (2000), 373–398. [14] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. [15] K.A. Winkler, Characterization of efficient and weakly efficient points in convex vector optimization, SIAM J. Optim. 19 (2008), 756–765. [16] K.Q. Zhao and X.M. Yang, Characterizations of efficiency in vector optimization with C(T)-valued mappings, Optim. Lett. 9 (2015), 391–401. [17] K.Q. Zhao and X.M. Yang, Characterizations of efficient and weakly efficient points in nonconvex vector optimization, J. Glob. Optim. 61 (2015), 575–590. | ||
آمار تعداد مشاهده مقاله: 75 تعداد دریافت فایل اصل مقاله: 138 |