- Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2017). Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior. In Proceedings of the IEEE International Conference on Computer Vision Workshops(pp. 206-213).
- Kotseruba, I., Rasouli, A., & Tsotsos, J. K. (2020, October). Do they want to cross? Understanding pedestrian intention for behavior prediction. In 2020 IEEE Intelligent Vehicles Symposium (IV)(pp. 1688-1693). IEEE
- Lorenzo, J., Parra, I., Wirth, F., Stiller, C., Llorca, D. F., & Sotelo, M. A. (2020, October). Rnn-based pedestrian crossing prediction using activity and pose-related features. In 2020 IEEE Intelligent Vehicles Symposium (IV)(pp. 1801-1806). IEEE.
- Rasouli, A., Kotseruba, I., Kunic, T., & Tsotsos, J. K. (2019). Pie: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision(pp. 6262-6271).
- Quan, R., Zhu, L., Wu, Y., & Yang, Y. (2021). Holistic LSTM for pedestrian trajectory prediction. IEEE transactions on image processing, 30, 3229-3239.
- Fushishita, N., Tejero-de-Pablos, A., Mukuta, Y., & Harada, T. (2020). Long-term human video generation of multiple futures using poses. In Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16(pp. 596-612). Springer International Publishing.
- Rasouli, A., & Tsotsos, J. K. (2019). Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE transactions on intelligent transportation systems, 21(3), 900-918.
- Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2017, June). Agreeing to cross: How drivers and pedestrians communicate. In 2017 IEEE Intelligent Vehicles Symposium (IV)(pp. 264-269). IEEE.
- Fang, J., Wang, F., Xue, J., & Chua, T. S. (2024). Behavioral intention prediction in driving scenes: A survey. IEEE Transactions on Intelligent Transportation Systems.
- Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 7291-7299)
- Chen, S., & Demachi, K. (2020). A vision-based approach for ensuring proper use of personal protective equipment (PPE) in decommissioning of Fukushima Daiichi nuclear power station. Applied Sciences, 10(15), 5129.
- O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
- Kotseruba, I., Rasouli, A., & Tsotsos, J. K. (2021). Benchmark for evaluating pedestrian action prediction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision(pp. 1258-1268).
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
- Yang, D., Zhang, H., Yurtsever, E., Redmill, K. A., & Özgüner, Ü. (2022). Predicting pedestrian crossing intention with feature fusion and spatio-temporal attention. IEEE Transactions on Intelligent Vehicles, 7(2), 221-230
- Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2020). Pedestrian action anticipation using contextual feature fusion in stacked rnns. arXiv preprint arXiv:2005.06582
- Ham, J. S., Kim, D. H., Jung, N., & Moon, J. (2023). Cipf: Crossing intention prediction network based on feature fusion modules for improving pedestrian safety. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3666-3675).
- Azarmi, M., Rezaei, M., Wang, H., & Glaser, S. (2024). PIP-Net: Pedestrian Intention Prediction in the Wild. arXiv preprint arXiv:2402.12810.
- Zhang, Z., Tian, R., & Ding, Z. (2023, June). Trep: Transformer-based evidential prediction for pedestrian intention with uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 3, pp. 3534-3542).
- Zhou, Y., Tan, G., Zhong, R., Li, Y., & Gou, C. (2023). Pit: Progressive interaction transformer for pedestrian crossing intention prediction. IEEE Transactions on Intelligent Transportation Systems.
- Damirchi, H., Greenspan, M., & Etemad, A. (2023, October). Context-aware pedestrian trajectory prediction with multimodal transformer. In 2023 IEEE International Conference on Image Processing (ICIP) (pp. 2535-2539). IEEE.
- Li, Y., Zhang, C., Zhou, J., & Zhou, S. (2024). POI-GAN: A Pedestrian Trajectory Prediction Method for Service Scenarios. IEEE Access.
- Lv, Z., Huang, X., & Cao, W. (2022). An improved GAN with transformers for pedestrian trajectory prediction models. International Journal of Intelligent Systems, 37(8), 4417-4436.
|