
تعداد نشریات | 21 |
تعداد شمارهها | 639 |
تعداد مقالات | 9,335 |
تعداد مشاهده مقاله | 67,965,252 |
تعداد دریافت فایل اصل مقاله | 24,600,799 |
Improving Stability and Buckling Resistance of Self-Supporting Isotrussed Telecommunication Tower under Wind Load: An Evaluation According to TIA-222-G Standards | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 16، دوره 13، شماره 3 - شماره پیاپی 39، آبان 2025، صفحه 54-68 | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.33439.2013 | ||
نویسندگان | ||
Mahamoudou Faharidine* 1، 2؛ Muhammad Usama Aslam1، 3؛ Mohamed Moutuou Choufaikat4 | ||
1Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai 200092, China | ||
2Department of Construction Management and Real Estate, School of Economics and Management, Tongji University, Shanghai 200092, China | ||
3Department of Civil Construction and Environmental Engineering Ames, Iowa State University, Iowa 50011, Unites States | ||
4Department of Mathematics, Faculty of Sciences and Letters, Aksaray University, Aksaray 68100, Turkey | ||
تاریخ دریافت: 16 اسفند 1402، تاریخ بازنگری: 03 تیر 1403، تاریخ پذیرش: 12 آبان 1403 | ||
چکیده | ||
Despite the growing demand for durable telecommunication infrastructure, tower stability and durability remain significant challenges. The self-supporting isotrussed telecommunication tower (SSITT) offers a promising solution, but its performance under wind loads requires further improvements. This paper investigates SSITT stability and provides guidelines for wind load calculations based on the Telecommunications Industry Association Standard 222 Revision G (TIA-222-G). The isotruss, a lightweight lattice structure made from advanced composite materials, is analyzed using ABAQUS finite element software. Two 10 m 8-node SSITTs, using carbon/epoxy as the material, were modeled. The results show that the maximum displacements of 45.17 mm (Model 1) and 47.29 mm (Model 2) at the top are within acceptable limits, while the maximum stresses of 135.6 MPa (Model 1) and 198.9 MPa (Model 2) are below the material’s limit of 306 MPa. The study found that the longitudinal member experiences the highest stress levels, which may lead to buckling. To improve performance and durability, it is recommended that the longitudinal member be designed with a larger radius than the helical member. | ||
کلیدواژهها | ||
Isotruss؛ Telecommunication tower؛ Wind loads؛ Stability؛ TIA-222-G | ||
مراجع | ||
[1] Qureshi J. Fibre-Reinforced Polymer (FRP) in Civil Engineering. Next Gener Fiber-Reinforced Compos - New Insights 2023. https://doi.org/10.5772/intechopen.107926.
[2] Correia JR, Bai Y, Keller T. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Compos Struct 2015;127:267–87. https://doi.org/10.1016/j.compstruct.2015.03.006.
[3] Zaman A, Gutub SA, Wafa MA. A review on FRP composites applications and durability concerns in the construction sector. J Reinf Plast Compos 2013;32:1966–88. https://doi.org/10.1177/0731684413492868.
[4] Hastak M, Mirmiran A, Richard D. A framework for life-cycle cost assessment of composites in construction. J Reinf Plast Compos 2003;22:1409–29. https://doi.org/10.1177/073168403035586.
[5] Hu W, Li Y, Yuan H. Review of Experimental Studies on Application of FRP for Strengthening of Bridge Structures. Adv Mater Sci Eng 2020;2020. https://doi.org/10.1155/2020/8682163.
[6] Polyzois DJ, Raftoyiannis IG, Ochonski A. Experimental and analytical study of latticed structures made from FRP composite materials. Compos Struct 2013;97:165–75. https://doi.org/10.1016/j.compstruct.2012.10.032.
[7] Harle SM. Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review. Structures 2024;60. https://doi.org/10.1016/j.istruc.2024.105881.
[8] Lee LS, Jain R. The role of FRP composites in a sustainable world. Clean Technol Environ Policy 2009;11:247–9. https://doi.org/10.1007/s10098-009-0253-0.
[9] Abbood IS, Odaa SA, Hasan KF, Jasim MA. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures - A review. Mater Today Proc 2021;43:1003–8. https://doi.org/10.1016/j.matpr.2020.07.636.
[10] Maiti S, Islam MR, Uddin MA, Afroj S, Eichhorn SJ, Karim N. Sustainable Fiber-Reinforced Composites: A Review. Adv Sustain Syst 2022;6. https://doi.org/10.1002/adsu.202200258.
[11] Waghmare S, Shelare S, Aglawe K, Khope P. A mini review on fibre reinforced polymer composites. Mater Today Proc 2022;54:682–9. https://doi.org/10.1016/j.matpr.2021.10.379.
[12] Sharma S, Sudhakara P, Nijjar S, Saini S, Singh G. Recent Progress of Composite Materials in various Novel Engineering Applications. Mater Today Proc 2018;5:28195–202. https://doi.org/10.1016/j.matpr.2018.10.063.
[13] mahboubizadeh S, Sadeq A, Arzaqi Z, Ashkani O, Samadoghli M. Advancements in fiber-reinforced polymer (FRP) composites: an extensive review. Discov Mater 2024;4. https://doi.org/10.1007/s43939-024-00091-9.
[14] Alshurafa S, Polyzois D. Design recommendations and comparative study of FRP and steel guyed towers. Eng Sci Technol an Int J 2018;21:807–14. https://doi.org/10.1016/j.jestch.2018.06.014.
[15] Alshurafa SA, Polyzois D. An experimental and numerical study into the development of FRP guyed towers. Compos Struct 2018;201:779–90. https://doi.org/10.1016/j.compstruct.2018.06.056.
[16] TIA Standard. ANSI-TIA-222-G-2005: Structural standard for antenna supporting structures and antennas. Washington DC, USA: Telecommunications Industry Association; 2006.
[17] CEN. Eurocode 3: Design of steel structures : Towers, masts and chimneys - Towers and masts, 2006.
[18] GB50135. GB 50135-2006: Code for design of high-rising structures, 2006.
[19] CSA. CSA S37-18: Antennas, towers, and antenna-supporting structures., 2018.
[20] IsoTruss. IsoTruss, Inc – A structural revolution 2023.
[21] Jensen, David W, Larry R. Francom. Iso-Truss Structure. EP 1 358 392 B1, 2012.
[22] Opdahl HB, Jensen DW. Dimensional analysis and optimization of isotruss structures with outer longitudinal members in uniaxial compression. Materials (Basel) 2021;14. https://doi.org/10.3390/ma14082079.
[23] Fan HL, Meng FH, Yang W. Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials. Arch Appl Mech 2006;75:635–47. https://doi.org/10.1007/s00419-006-0032-x.
[24] Gaikwad AA, Kenjale AC, Bhosale AB, Dumbre T V, Arakerimath RR, Roy S. Design Analysis & Manufacturing Of Carbon Composite Isotruss For Bending Analysis. Int Conf Recent Adv Mech Eng 2015:133–6.
[25] Sui Q, Fan H, Lai C. Failure analysis of 1D lattice truss composite structure in uniaxial compression. Compos Sci Technol 2015;118:207–16. https://doi.org/10.1016/j.compscitech.2015.09.003.
[26] M G, S R. Buckling Characteristics Study of Isotruss Structure with Different Positions of Longitudinal Members. Int J Cybern Informatics 2016;5:217–25. https://doi.org/10.5121/ijci.2016.5121.
[27] Richardson S. In-Situ Testing of a Carbon/Epoxy IsoTruss Reinforced Concrete Foundation Pile. Brigham Young University, 2006.
[28] Rackliffe ME, Jensen DW, Lucas WK. Local and global buckling of ultra-lightweight IsoTruss® structures. Compos Sci Technol 2006;66:283–8. https://doi.org/10.1016/j.compscitech.2005.04.038.
[29] Sui Q, Fan H, Manufacturing I. Vibration Behaviors of the Isotruss ® Composite Structure. 21st Int. Conf. Compos. Mater., 2017, p. 1–4.
[30] Jensen DW, Hinds KB. Shear-dominated bending behavior of carbon/epoxy composite lattice isobeam structures. ICCM Int Conf Compos Mater 2015;2015-July:19–24.
[31] Asay BA. Bending Behavior of Carbon / Epoxy Composite IsoBeam Structures. Brigham Young University, 2015.
[32] Hinds KB. Shear-dominated bending behavior of carbon/epoxy composite lattice isobeam structures. vol. 2015-July. Provo, Utah: 2015.
[33] Ferrell MJ. Flexural Behavior of Carbon/Epoxy IsoTruss Reinforced-Concrete Beam-Columns. Brigham Young University, 2005.
[34] Gaufin T. Design of a Composite Bridge for Aspen Grove. Brigham Young University, 1999.
[35] Delta7 Bikes n.d.
[36] Lai C. Mechanical properties and fabrication of composite grid structures. Northwestern Polytechnical University, 2015.
[37] Opdahl Hanna Belle. Investigation of IsoTruss ® Structures in Compression Using Numerical , Dimensional , and Optimization Methods. Brigham Young University, 2020.
[38] Ayers JT. Hydrodynamic Drag and Flow Visualization of IsoTruss Lattice Structures. Brigham Young University, 2005.
[39] Hansen SM, Jensen DW. Influence of consolidation and interweaving on compression behavior of IsoTrussTM structures. Inst Phys Conf Ser 2003;180:83–92.
[40] Lai C, Sui Q, Fan H. Designing Hierarchical IsoTruss Column Based on Controlling Multi-Buckling Behaviors. Int J Struct Stab Dyn 2022;22:1–19. https://doi.org/10.1142/S0219455422500304.
[41] Rackliffe ME. Development of Ultra-lightweight IsoTrussTM Grid Structures. Brigham Young University, 2002.
[42] IsoTruss. Sustainability: Eco-friendly – IsoTruss, Inc 2023.
[43] Rasool AM, Qureshi MU, Ahmad M. A Comparative Study on the Calculation of Wind Load and Analysis of Communication Tower as per TIA-222-G and TIA-222-H Standards. KSCE J Civ Eng 2021;25:646–53. https://doi.org/10.1007/s12205-020-0662-5.
[44] Smith M. ABAQUS/Standard User’s Manual, Version 6.9 2009. | ||
آمار تعداد مشاهده مقاله: 215 |