
تعداد نشریات | 21 |
تعداد شمارهها | 639 |
تعداد مقالات | 9,345 |
تعداد مشاهده مقاله | 67,977,121 |
تعداد دریافت فایل اصل مقاله | 25,789,214 |
Seismic Microzonation and Probability of Ground Failure Assessment Caused by liquefaction for Bogura District, Bangladesh | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 12، دوره 13، شماره 2 - شماره پیاپی 38، مرداد 2025، صفحه 218-242 اصل مقاله (1.83 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.34111.2086 | ||
نویسندگان | ||
Md. Belal Hossain1؛ Md Mahabub Rahman* 2 | ||
1Associate Professor, Department of Civil Engineering, Hajee Mohammad Danesh Science and Technology University, Bangladesh | ||
2Lecturer, Department of Civil Engineering, Hajee Mohammad Danesh Science and Technology University, Bangladesh | ||
تاریخ دریافت: 29 اردیبهشت 1403، تاریخ بازنگری: 20 مرداد 1403، تاریخ پذیرش: 10 آبان 1403 | ||
چکیده | ||
The aim of this study is to create a Mercalli intensity map and evaluate the ground failure probability caused by liquefaction in the Bogura district. To generate a Mercalli intensity seismic microzonation map, first the shear wave velocity (Vs) was determined by analyzing data from 345 soil test reports. The conversion of Vs to site amplification factor (AF) and Peak Ground Acceleration (PGA) was carried out using the widely used empirical equations, considering earthquake magnitudes 1850–2023. Finally, the susceptibility of liquefaction was evaluated for the study area using 345 borehole data, considering a probable earthquake magnitude and site-specific PGA. Some of the frequently used empirical methods are utilized for the evaluation, and the results are presented in the form of hazard maps indicating factors of safety, liquefaction potential, and ground failure probability. The results demonstrate that the least and maximum PGA are both 0.06 g and 0.16 g, while the AF ranges from 1.903 to 3.98 between the minimum and maximum. Moreover, the surface acceleration (SA) varies between 0.143 g and 0.51 g. Based on the Mercalli Intensity seismic microzonation map, 22.45% of the areas have intensity VII, 72.9% of the regions have intensity VIII, and 4.65% of the areas have intensity IX. The hazard map reveals that 2% of the study region is judged to be at extremely high risk for ground failure due to liquefaction during the scenario earthquake. Additionally, it was determined that 13% and 44% of the study region's regions were at high or moderate risk of ground failure under the aforementioned earthquake scenario. The intensity and hazard maps created for Bogura district are crucial to achieving sustainable development goals. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Seismic zonation؛ Ground failure probability؛ SPT data؛ Bogura؛ Hazard map | ||
مراجع | ||
[1] Ansa A, Biro Y, Erken A, Gülerce Ü. Seismic Microzonation: A Case Study. Recent Adv. Earthq. Geotech. Eng. Microzonat., Dordrecht: Kluwer Academic Publishers; n.d., p. 253–66. doi:10.1007/1-4020-2528-9_9.
[2] Dai FC, Lee CF, Zhang XH. GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 2001;61:257–71. doi:10.1016/S0013-7952(01)00028-X.
[3] van Rooy JL, Stiff JS. Guidelines for urban engineering geological investigations in South Africa. Bull Eng Geol Environ 2001;59:0285–95. doi:10.1007/s100640000076.
[4] T. G. Sitharam, P. Anbazhagan. Seismic microzonation: principles, practices and experiments. Int. Conf. Dev. Urban Areas Geotech. Eng. , Saint Petersburg, USA, Saint Petersburg., 2008.
[5] Behzadfar, B., Maleki, A., Lotfollahi Yaghin MA. Improved Seismic Performance of Chevron Brace Frames Using Multi-Pipe Yield Dampers. J Rehabil Civ Eng 2020;8:137–55. doi:10.22075/jrce.2020.19792.1383.
[6] Rezaee Manesh, M., Fattahi, S., & Saffari H. Investigation of Earthquake Significant Duration on the Seismic Performance of Adjacent Steel Structures in Near-Source. J Rehabil Civ Eng 2021;9:84–101. doi:10.22075/jrce.2020.20373.1410.
[7] Tehrani, P., Eini A. Seismic Performance Assessment of Steel Moment Frames with Non-parallel System Irregularity. J Rehabil Civ Eng 2022;10:109–28. doi:10.22075/jrce.2021.23918.1528.
[8] Jalilkhani M, Babaei M, Ghasemi SH. Evaluation of the seismic response of single-story RC frames under biaxial earthquake excitations. J Rehabil Civ Eng 2020;8:98–108. doi:10.22075/JRCE.2020.19727.1379.
[9] Mostazid, M. I., Mahabub, M. and Mahbur M. Seismic Vulnerability Assessment of Existing RCC Buildings in Dinajpur City : A Case Study on Ward No . 6. 2rd Int. Conf. Planin. Archit. Civ. Eng., 2019, p. 1–6.
[10] Hoseynzadeh, H., Mortezaei A. Seismic Vulnerability and Rehabilitation of One of The World’s Oldest Masonry Minaret under The Different Earthquake Frequency Contents. J Rehabil Civ Eng 2021;9:12–36. doi:10.22075/jrce.2021.21251.1441.
[11] Lee DH, Ku CS, Yuan H. A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng Geol 2004;71:97–117. doi:10.1016/S0013-7952(03)00128-5.
[12] Idriss IM, Boulanger RW. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 2006;26:115–30. doi:10.1016/j.soildyn.2004.11.023.
[13] Setiawan H, Serikawa Y, Sugita W, Kawasaki H, Miyajima M. Experimental study on mitigation of liquefaction-induced vertical ground displacement by using gravel and geosynthetics. Geoenvironmental Disasters 2018;5:22. doi:10.1186/s40677-018-0115-3.
[14] Verdugo R, González J. Liquefaction-induced ground damages during the 2010 Chile earthquake. Soil Dyn Earthq Eng 2015;79:280–95. doi:10.1016/j.soildyn.2015.04.016.
[15] Setiawan H, Serikawa Y, Nakamura M, Miyajima M, Yoshida M. Structural damage to houses and buildings induced by liquefaction in the 2016 Kumamoto Earthquake, Japan. Geoenvironmental Disasters 2017;4:13. doi:10.1186/s40677-017-0077-x.
[16] Sharma K, Subedi M, Acharya IP, Pokharel B. Geotechnical and Structural Aspect of 2015 Gorkha Nepal Earthquake and Lesson Learnt. J Inst Eng 2018;13:20–36. doi:10.3126/jie.v13i1.20345.
[17] Khatti J, Fissha Y, Grover KS, Ikeda H, Toriya H, Adachi T, et al. Cone penetration test-based assessment of liquefaction potential using machine and hybrid learning approaches. Multiscale Multidiscip Model Exp Des 2024. doi:10.1007/s41939-024-00447-x.
[18] Hossain MB, Roknuzzaman M, Rahman MM. Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civ Eng J 2022;8:1459–81. doi:10.28991/CEJ-2022-08-07-010.
[19] Rahman MM, Hossain MB, Roknuzzaman M. Effect of peak ground acceleration (PGA) on liquefaction behavior of subsoil: A case study of Dinajpur Sadar Upazila, Bangladesh. AIP Conf. Proc., 2023, p. 030002. doi:10.1063/5.0129770.
[20] Kumar DR, Samui P, Burman A, Biswas R, Vanapalli S. A novel approach for assessment of seismic induced liquefaction susceptibility of soil. J Earth Syst Sci 2024;133:128. doi:10.1007/s12040-024-02341-z.
[21] Kumar K, Samui P, Choudhary S. Assessment of maximum liquefaction distance using soft computing approaches. Geomech Eng 2024;37:395–418. doi:https://doi.org/10.12989/gae.2024.37.4.395.
[22] Rahman M, Hossain M, Sayed A, Thakur S. Assesment of Liquefaction Potential Based on the Logistic Regression Machine Learning Algorithm. 7th Int. Conf. Civ. Eng. Sustain. Dev. (ICCESD 2024), 2024, p. 1–11. doi:10.13140/RG.2.2.24047.65440.
[23] Bhardwaj V, Singh K. Assessment of landslide susceptibility of Pithoragarh, Uttarakhand (India) using logistic regression and multi-criteria decision-based analysis by analytical hierarchy process. Appl Earth Sci Trans Institutions Min Metall 2023;132:178–86. doi:10.1080/25726838.2023.2237370.
[24] Alsabhan AH, Singh K, Sharma A, Alam S, Pandey DD, Rahman SAS, et al. Landslide susceptibility assessment in the Himalayan range based along Kasauli – Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J King Saud Univ - Sci 2022;34:101759. doi:10.1016/j.jksus.2021.101759.
[25] Jalil A, Fathani TF, Satyarno I, Wilopo W. Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters 2021;8:21. doi:10.1186/s40677-021-00194-y.
[26] R. W. Boulanger and I. M. Idriss. CPT and SPT based liquefaction triggering procedures. 2014.
[27] Qazi A, Singh K, Vishwakarma DK, Abdo HG. GIS based landslide susceptibility zonation mapping using frequency ratio, information value and weight of evidence: a case study in Kinnaur District HP India. Bull Eng Geol Environ 2023;82:332. doi:10.1007/s10064-023-03344-8.
[28] Singh K, Khaidem S, Gupta SK, Sharma A. Assessment of landslide occurrence and prediction of susceptible zone based on GIS along national highway 37, Manipur, India. Sādhanā 2024;49:74. doi:10.1007/s12046-023-02422-7.
[29] Gururani DM, Kumar Y, Abed SA, Kumar V, Vishwakarma DK, Al-Ansari N, et al. Mapping Prospects for Artificial Groundwater Recharge Utilizing Remote Sensing and GIS Methods. Water 2023;15:3904. doi:10.3390/w15223904.
[30] McGuire RK. Seismic Ground Motion Parameter Relations. J Geotech Eng Div 1978;104:481–90. doi:10.1061/AJGEB6.0000615.
[31] Atkinson GM, Boore DM. Modifications to Existing Ground-Motion Prediction Equations in Light of New Data. Bull Seismol Soc Am 2011;101:1121–35. doi:10.1785/0120100270.
[32] I. M. Idriss and R. W. Boulanger. Soil liquefaction during earthquakes. 2008.
[33] T. Iwasaki, K. I. Tokida, F. Tatsuoka, S. Watanabe SY and HS. Micro-zonation for soil liquefaction potential using simplified methods. 3rd Intl. Microzonat. Conf. proceeding, 1982, p. 1310–1330.
[34] D. K. Li CHJ and RDA. Liquefaction potential index: a critical assessment using probability concept. J Geoengin 2006;1:11–24. doi:https://doi.org/10.6310/jog.2006.1(1).2.
[35] Weil R, Brady N. Soil Architecture and Physical Properties. Chp. 4. Nat. Prop. Soils. 15th ed. P, 2017.
[36] H. Ali. Earthquake database and seismic zoning of Bangladesh. Inf. Technol. tools Nat. disaster risk Manag. Proc. Int. Symp., 1999, p. 59–74.
[37] Ghosh S. Geomorphic Appraisal of Active Tectonics and Fluvial Anomalies in Peninsular Rivers of the Bengal Basin (West Bengal, India), 2022, p. 503–41. doi:10.1007/978-3-030-79634-1_23.
[38] BNBC. Bangladesh National Building Code. Hous Build Res Inst 2014;Part 6(2).
[39] B. K. Bansal and S. K. Nath. Seismic micro-zonation handbook, Geoscience divisions. 2011.
[40] Yilmaz I, Bagci A. Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environ Geol 2006;49:708–19. doi:10.1007/s00254-005-0112-1.
[41] Ayele A, Woldearegay K, Meten M. A review on the multi-criteria seismic hazard analysis of Ethiopia: with implications of infrastructural development. Geoenvironmental Disasters 2021;8:9. doi:10.1186/s40677-020-00175-7.
[42] McGuire RK. Seismic Ground Motion Parameter Relations. ASCE J Geotech Eng Div 1978;104:481–90. doi:10.1061/ajgeb6.0000615.
[43] Lee SH. Regression models of shear wave velocities in Taipei basin. J Chinese Inst Eng 1990;13:519–32. doi:10.1080/02533839.1990.9677284.
[44] Dikmen Ü. Statistical correlations of shear wave velocity and penetration resistance for soils. J Geophys Eng 2009;6:61–72. doi:10.1088/1742-2132/6/1/007.
[45] Ali B. Estimation of linear site amplification by a ground motion prediction equation using results from a site survey. Pakistan J Meteorol 2013;9:33–42.
[46] Boore DM. Estimating s(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths < 30 m). Bull Seismol Soc Am 2004;94:591–7. doi:10.1785/0120030105.
[47] Boore DM, Joyner WB. Site amplifications for generic rock sites. Bull Seismol Soc Am 1997;87:327–41. doi:10.1785/BSSA0870020327.
[48] Sarker JK. GIS based methodologies of seismic Hazard and risk analysis for Bangladesh. BUET, 2011.
[49] Toni M. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt. NRIAG J Astron Geophys 2017;6:30–40. doi:10.1016/j.nrjag.2016.12.002.
[50] Boore DM, Stewart JP, Seyhan E, Atkinson GM. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthq Spectra 2014;30:1057–85. doi:10.1193/070113EQS184M.
[51] M. D. Trifunac; A. G. Brady. On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bull Seismol Soc Am 1975;65:139–62. doi:https://doi.org/10.1785/BSSA0650010139.
[52] Hussien MN, Karray M. Shear wave velocity as a geotechnical parameter: an overview. Can Geotech J 2016;53:252–72. doi:10.1139/cgj-2014-0524.
[53] USGS. Search Earthquake Catalog 2023.
[54] Sonmez H. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol,Turkey). Environ Geol 2003;44:862–71. doi:10.1007/s00254-003-0831-0. | ||
آمار تعداد مشاهده مقاله: 287 تعداد دریافت فایل اصل مقاله: 17 |