- Yanga, Y., Hua, C., Liub, Q. and Lia, J., 2024. Research progress and prospects of colored zirconia ceramics: A review. Journal of Advanced Ceramics, 13(10) pp. 1505-1522.
- Gulati, S., Kumar, S. and Baul, A., 2024. Nanoceramics: novel and benign materials in prosthodontics. In Industrial Applications of Nanoceramics, (pp. 79-98), Elsevier.
- Wang, H., Shen, F., Li, Z., Zhou, B., Zhao, P., Wang, W., Cheng, B., Yang, J., Li, B. and Wang, X., 2023. Preparation of high-performance ZrO2 bio-ceramics by stereolithography for dental restorations. Ceramics International, part A, 49 (17) pp. 28048-28061.
- Liang, Z., Liu, X., Zhao, Z., Lu, H., Wang, H., Liu, C., Wang, M. and Song, X., 2023. Enhancing hardness and toughness of WC simultaneously by dispersed ZrO2. Materials Science and Engineering: A, 870, p. 144905.
- Gionea, A., Andronescu, E., Voicu, G., Bleotu, C. and Surdu, V.A., 2016. Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties. International Journal of Pharmaceutics, 510(2), pp. 439-448.
- Chen, H., Huang, Z.Y. and Chen, W., 2023. The fabrication and in vitro bioactivity of HA/ZrO2/MgO gradient composite coatings. Ceramics International, 50(1), pp. 1814-1825.
- Ali, A.A., Shama, S.A., Amin, A.S. and EL-Sayed, S.R., 2021. Synthesis and characterization of ZrO2/CeO2 nanocomposites for efficient removal of Acid Green 1 dye from aqueous solution. Materials Science and Engineering: B, 269, p. 115167.
- Wang, S. and Liu, J., 2021. Microstructure and growth characteristics of Al2O3/Er2O3/ZrO2 solidified ceramics with different compositions. Journal of the European Ceramic Society, 41(7), pp. 4284-4293.
- Zhai, S., Pan, W. and Liu, J., 2023. Regulation of Y2O3 addition on structure and properties of Al2O3/ZrO2 (Y2O3) directionally solidified eutectic ceramic. Ceramics International, 49(18), pp. 30240-30247.
- Pian, X., Fan, B., Chen, H., Zhao, B., Zhang, X. and Zhang, R., 2014. Preparation of m-ZrO2 compacts by microwave sintering. Ceramics International, 40(7), pp. 10483-10488.
- Dimitriadis, K., Moschovas, D., Tulyaganov, D.U. and Agathopoulos, S., 2023. Microstructure, physical and mechanical properties of dental polychromic multilayer zirconia of uniform composition. European Journal of Oral Sciences, p.e12959.
- Al-Dwairi, Z.N., Al-Aghbari, L., Husain, N.A.H. and Özcan, M., 2023. Durability of cantilever inlay-retained fixed dental prosthesis fabricated from multilayered zirconia ceramics with different designs. Journal of the mechanical behavior of biomedical materials, 137, p. 105547.
- Zhang, F., Vanmeensel, K., Batuk M., Hadermann J., Inokoshi M., et al., 2015. Highlytranslucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation, Acta Biomaterialia, 16, pp.215–222.
- Samodurova A., Kocjan, A., Swain, M.V., Kosmac T., 2015, The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics, Acta Biomaterialia, Biomater, 11, pp. 477–487.
- Seesala, V.S., Rajasekaran, R., Vaidya, P.V. and Dhara, S., 2022. Functional gradient coating of alumina on net shaped zirconia implant: Improved strength, aging resistance, and role of residual stress. Journal of the European Ceramic Society, 42(13), pp. 5932-5942.
- Salma, U., 2019. Microstructure development for optimum fracture toughness of YSZ added Al2O3
- Ross, I.M., Rainforth, W.M., Scott A.J., Brydson R., 2001, The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y-TZP), Scripta Materialia. 45, pp. 653–660.
- Piascik, J.R., Zhang, Q., Bower, C.A., Thompson, J.Y., Stoner, B.R., 2007. Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia. Journal of Materials Research, 22(4), pp. 1105-1111.
- Devi, S., Chaudhary, S., Hashim, M., Batoo, K.M., Hadi, M. and Shirsath, S.E., 2024. Co-relation between Rietveld analysis, dielectric studies and impedance spectroscopy of the Ba1− xSrxTiO3 Journal of Materials Science: Materials in Electronics, 35(16), pp. 1-24.
- Feng, Y., Wu, D., Stewart, M.G. and Gao, W., 2023. Past, current and future trends and challenges in non-deterministic fracture mechanics: A review. Computer Methods in Applied Mechanics and Engineering, 412, p.116102.
- Li, P., Li, W., Li, B., Yang, S., Shen, Y., Wang, Q. and Zhou, K., 2023. A review on phase field models for fracture and fatigue. Engineering Fracture Mechanics, p. 109419.
- Almarghani, L.K., Shetawey, R.A. and Alassar, R.M., 2024. Marginal Accuracy and Fracture Resistance of Occlusal Veneers Constructed from Different Pressable Ceramics. Al-Azhar Journal of Dentistry, 11(2), p. 14.
- Lien, W., Minju, D.Y., Jones, S.D., Wentworth, C.V., Savett, D.A., Mansell, M.R. and Vandewalle, K.S., 2021. The effect of micro-mechanical signatures of constituent phases in modern dental restorative materials on their macro-mechanical property: A statistical nanoindentation approach. Journal of the Mechanical Behavior of Biomedical Materials, 120, p. 104591.
- He, Q., Qin, Y., Zhan, X., Zhang, W. and Ye, J., 2023. Physicochemical and biological properties of Y-TZP ceramics modified by infiltration with different bioactive glasses for dental implant. Ceramics International, 49(17), pp. 29187-291897.
- Zhang, R., Zhao, C., Xing, J., Niu, J., Chen, H. and Qian, Y., 2023. Macro and micro investigation of fracture behavior and crack evolution considering inherent microcrack in prefabricated flawed granite. Engineering Fracture Mechanics, 284, p. 109264.
- Karpenko, O., Oterkus, S. and Oterkus, E., 2020. Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. Journal of Peridynamics and Nonlocal Modeling, 2, pp. 289-316.
- Candaş, A., Oterkus, E. and İmrak, C.E., 2021. Dynamic crack propagation and its interaction with micro-cracks in an impact problem. Journal of Engineering Materials and Technology, 143(1), p. 011003.
- Teng, Z.H., Liao, D.M., Wu, S.C., Sun, F., Chen, T. and Zhang, Z.B., 2019. An adaptively refined XFEM for the dynamic fracture problems with micro-defects. Theoretical and Applied Fracture Mechanics, 103, p.102255.
- Chen, R., Li, B. and Xu, K., 2022. Effect of particle morphology on fatigue crack propagation mechanism of TiB2-reinforced steel matrix composites. Engineering Fracture Mechanics, 274, p.108752.
- Moussa, W.A., 2000. Finite element study of the interaction and shielding effects of multiple cracks in three-dimensions (Doctoral dissertation, Carleton University).
- Bouiadjra, B.B., Benguediab, M., Elmeguenni, M., Belhouari, M., Serier, B. and Aziz, M.N.A., 2008. Analysis of the effect of micro-crack on the plastic strain ahead of main crack in aluminium alloy 2024 T3. Computational materials science, 42(1), pp. 100-106.
- Chudnovsky, A. and Wu, S., 1991. Elastic interaction of a crack with a random array of microcracks. International Journal of Fracture, 49, pp. 123-140.
- Rose, L.R.F., 1986. Microcrack interaction with a main crack. International journal of fracture, 31, pp.233-242.
- Petrova, V., Tamuzs, V. and Romalis, N., 2000. A survey of macro-microcrack interaction problems.
- Li, J., Yang, B., Wang, S., James, M.N., Xiao, S., Zhu, T. and Yang, G., 2023. Modified Model of Crack Tip Stress Field Considering Dislocation Slip Accumulation and Crack Tip Blunting. Chinese Journal of Mechanical Engineering, 36(1), pp. 1-14.
- Wang, F. and Wang, M., 2020. Effect of holes on dynamic crack propagation under impact loading. Applied Sciences, 10(3), p. 1122.
- Demirel, M.G., Mohammadi, R. and Keçeci, M., 2023. Crack Propagation and Fatigue Performance of Partial Posterior Indirect Restorations: An Extended Finite Element Method Study. Journal of Functional Biomaterials, 14(9), p. 484.
- Milios, J. and Spathis, G., 1988. Dynamic interaction of a propagating crack with a hole boundary. Acta mechanica, 72(3-4), pp. 283-295.
- Theocaris, P.S. and Milios, J., 1981. Crack arrest modes of a transverse crack going through a longitudinal crack or a hole.
- Yi, W., Rao, Q.H., Luo, S., Shen, Q.Q. and Li, Z., 2020. A new integral equation method for calculating interacting stress intensity factor of multiple crack-hole problem. Theoretical and Applied Fracture Mechanics, 107, p. 102535.
- Ganesh, K.V., Islam, M.R.I., Patra, P.K. and Travis, K.P., 2022. A pseudo-spring based SPH framework for studying fatigue crack propagation. International Journal of Fatigue, 162, p. 106986.
- Belytschko, T., Liu, W.K., Moran, B. and Elkhodary, K., 2014. Nonlinear finite elements for continua and structures. John wiley & sons.
- Wang, H., Liu, Z., Xu, D., Zeng, Q. and Zhuang, Z., 2016. Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks. International Journal of Damage Mechanics, 25(1), pp. 4-25.
- Dorduncu, M., Ren, H., Zhuang, X., Silling, S., Madenci, E. and Rabczuk, T., 2024. A review of peridynamic theory and nonlocal operators along with their computer implementations. Computers & Structures, 299, p. 107395.
- Silling, S.A., Weckner, O., Askari, E. and Bobaru, F., 2010. Crack nucleation in a peridynamic solid. International Journal of Fracture, 162, pp. 219-227.
- Huang, D., Lu, G. and Qiao, P., 2015. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 94, pp. 111-122.
- Ha, Y.D. and Bobaru, F., 2011. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics, 78(6), pp. 1156-1168.
- Bobaru, F. and Hu, W., 2012. The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. International journal of fracture, 176, pp. 215-222.
- Basoglu, M.F., Zerin, Z., Kefal, A. and Oterkus, E., 2019. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Computational Materials Science, 162, pp. 33-46.
- Vazic, B., Wang, H., Diyaroglu, C., Oterkus, S. and Oterkus, E., 2017. Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Materials Science, 4(1), pp. 118-136.
- Yoffe, E.H., 1951. LXXV. The moving griffith crack. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(330), pp. 739-750.
- Silling, S.A., Epton, M., Weckner, O., Xu, J. and Askari, E., 2007. Peridynamic states and constitutive modeling. Journal of elasticity, 88, pp. 151-184.
- Silling, S.A. and Askari, E., 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures, 83(17-18), pp. 1526-1535.
- Kilic, B. and Madenci, E., 2010. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theoretical and Applied Fracture Mechanics, 53(3), pp. 194-204.
- Madenci, E. and Oterkus, E., 2013. Peridynamic theory. In Peridynamic theory and its applications (pp. 19-43). New York, NY: Springer New York.
- Silling, S.A. and Bobaru, F., 2005. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics, 40(2-3), pp. 395-409.
- ASTM-C373. 1999. Standard Test Method for Water Absorption, Bulk Density, Apparent, Porosity, and Apparent Specific Gravity of Fired Whiteware Products. American Standard and Testing Materials. C373-88 (ASTM).
- Moradkhani, A. and Baharvandi, H., 2018. Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites. Engineering Fracture Mechanics, 191, pp. 446-460.
- Zhang, W., Bao, J., Xu, J., Wu, X., Li, D., Song, X. and An, S., 2017. Composition dependence of the adjustable microstructure and mechanical properties of ytterbia-ceria-costabilised TZP. Journal of Alloys and Compounds, 727, pp. 627-632.
- Toraya, H., Yoshimura, M. and Somiya, S., 1984. Calibration curve for quantitative analysis of the monoclinic‐tetragonal ZrO2 system by X‐ray diffraction. Journal of the American Ceramic Society, 67(6), pp. C-119.
- Garvie, R.C. and Nicholson, P.S., 1972. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 55(6), pp. 303-305.
- Chevalier, J., Cales, B. and Drouin, J.M., 1999. Low‐temperature aging of Y‐TZP ceramics. Journal of the American Ceramic Society, 82(8), pp.2150-2154.
- Kohorst, P., Borchers, L., Strempel, J., Stiesch, M., Hassel, T., Bach, F.W. and Hübsch, C., 2012. Low-temperature degradation of different zirconia ceramics for dental applications. Acta biomaterialia, 8(3), pp. 1213-1220.
- Moradkhani, A., Panahizadeh, V. and Hoseinpour, M., 2023. Indentation fracture resistance of brittle materials using irregular cracks: A review.
- Zorzi, J.E. and Perottoni, C.A., 2013. Estimating Young’s modulus and Poisson's ratio by instrumented indentation test. Materials Science and Engineering: A, 574, pp. 25-30.
- Hardness, A.B., 1999. Standard Test Method for Microindentation Hardness of Materials. ASTM Committee: West Conshohocken, PA, USA, 384, p. 399.
- ASTM International. ASTM C769-98. Standard test method for sonic velocity in manufactured carbon and graphite materials for use in obtaining an approximate Young’s modulus.
- Moradkhani, A., Baharvandi, H. and Naserifar, A., 2019. Fracture toughness of 3Y-TZP dental ceramics by using vickers indentation fracture and SELNB methods. Journal of the Korean Ceramic Society, 56(1), pp. 37-48.
- Guinea, G.V., Pastor, J.Y., Planas, J. and Elices, M., 1998. Stress intensity factor, compliance and CMOD for a general three-point-bend beam. International Journal of Fracture, 89, pp. 103-116.
- ASTM Committee C-1161 on Advanced Ceramics, 2013. Standard test method for flexural strength of advanced ceramics at ambient temperature. ASTM International.
- áSakib Khan, M., áSaiful Islam, M. and Bates, D., 1998. Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study. Journal of Materials Chemistry, 8(10), pp. 2299-2307.
- Gaillard, Y., Anglada, M. and Jiménez-Piqué, E., 2009. Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. Journal of materials research, 24(3), pp. 719-727.
- Moradkhani, A., Baharvandi, H. and Naserifar, A., 2019. Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC Nanocomposites. Journal of the Korean Ceramic Society, 56(3), pp. 256-268.
- Moradkhani, A.R., Baharvandi, H.R., Vafaeesefat, A. and Tajdari, M., 2012. Microstructure and mechanical properties of Al2O3-SiC nanocomposites with 0.05% MgO and different SiC volume fraction.
- Twigg, P.C., Riley, F.L. and Roberts, S.G., 2002. Nanoindentation investigation of micro-fracture wear mechanisms in polycrystalline alumina. Journal of materials science, 37, pp. 845-853.
- Krell, A. and Schädlich, S.J.M.S., 2001. Nanoindentation hardness of submicrometer alumina ceramics. Materials Science and Engineering: A, 307(1-2), pp. 172-181.
- Stollberg, D.W., Hampikian, J.M., Riester, L. and Carter, W.B., 2003. Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Materials Science and Engineering: A, 359(1-2), pp. 112-118.
- Wang, J. and Stevens, R., 1989. Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials science, 24, pp. 3421-3440.
- Jing, Q., Bao, J., Ruan, F., Song, X., An, S., Zhang, Y., Tian, Z., Lv, H., Gao, J. and Xie, M., 2019. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International, 45(5), pp. 6066-6073.
- Zhang, F., Chevalier, J., Olagnon, C., Van Meerbeek, B. and Vleugels, J., 2017. Slow crack growth and hydrothermal aging stability of an alumina-toughened zirconia composite made from La2O3-doped 2Y-TZP. Journal of the European Ceramic Society, 37(4), pp. 1865-1871.
- Mercer, C., Williams, J.R., Clarke, D.R. and Evans, A.G., 2007. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2081), pp. 1393-1408.
- Zhao, M., Ren, X. and Pan, W., 2014. Effect of lattice distortion and disordering on the mechanical properties of titania‐doped yttria‐stabilized zirconia. Journal of the American Ceramic Society, 97(5), pp. 1566-1571.
- Zarone, F., Russo, S. and Sorrentino, R., 2011. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dental materials, 27(1), pp. 83-96.
- Vijan, K.V., 2017. An overview of the current survival status and clinical recommendation for porcelain fused to metal vs all-ceramic Zirconia posterior fixed partial dentures. World Journal Dentistry, 8(2), pp. 145-50.
- Yang, R.S., Ding, C.X., Yang, L.Y., Xu, P. and Chen, C., 2018. Hole defects affect the dynamic fracture behavior of nearby running cracks. Shock and Vibration, 2018.
- Chen, Z. and Chu, X., 2021. Peridynamic modeling and simulation of fracture process in fiber-reinforced concrete. Computer Modeling in Engineering & Sciences, 127(1), pp. 241-272.
- Kachanov, M., 1986. On crack-microcrack interactions. International Journal of Fracture, 30, pp. R65-R72.
- Kachanov, M., 1993. Elastic solids with many cracks and related problems. Advances in applied mechanics, 30, pp. 259-445.
- Gong, S.X. and Horii, H., 1989. General solution to the problem of microcracks near the tip of a main crack. Journal of the Mechanics and Physics of Solids, 37(1), pp. 27-46.
- Romalis, N.B. and Tamuzh, V.P., 1984. Propagation of a main crack in a body with distributed microcracks. Mechanics of Composite Materials, 20(1), pp. 35-43.
- Madenci, E. and Oterkus, S., 2016. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. Journal of the Mechanics and Physics of Solids, 86, pp. 192-219.
- Chandar, K.R. and Knauss, W.G., 1982. Dynamic crack-tip stresses under stress wave loading—a comparison of theory and experiment. International Journal of Fracture, 20, pp.209-222.
|