
تعداد نشریات | 21 |
تعداد شمارهها | 639 |
تعداد مقالات | 9,334 |
تعداد مشاهده مقاله | 67,964,970 |
تعداد دریافت فایل اصل مقاله | 24,564,975 |
Structural Analysis of Two Flexible Pavements Subjected to Groundwater Table Rising Considering Unsaturated Behaviour of Subgrade Soil | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 34، دوره 13، شماره 4 - شماره پیاپی 40، بهمن 2025، صفحه 190-206 اصل مقاله (1.34 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2025.34801.2146 | ||
نویسنده | ||
Mohammed Bouatia* 1، 2 | ||
1LGC-ROI, Laboratoire de Génie Civil-Risques et Ouvrages en Interaction, Department of Civil Engineering, University of Batna 2-Mustafa Ben Boulaid, 0578 Batna, Algeria | ||
2LTPiTE, Laboratoire Travaux Publics, ingénierie des Transports Environnement, Ecole Nationale Supérieure des Travaux Publics, 16051 Algiers, Algeria | ||
تاریخ دریافت: 08 مرداد 1403، تاریخ بازنگری: 11 آذر 1403، تاریخ پذیرش: 26 دی 1403 | ||
چکیده | ||
In flexible pavements, the resilient modulus (RM) of the subgrade layer is crucial for ensuring the serviceability of these structures throughout their lifespan. This research presents a 3D numerical analysis of the two most commonly used flexible pavement structures in the Algerian road network, GB/GB and GB/NTG, considering the effect of subgrade RM vulnerability to groundwater table (GWT) fluctuations. The first pavement structure is Gravel-Bitumen/Gravel-Bitumen (GB/GB), and the second is Gravel-Bitumen/Non-Treated-Gravel (GB/NTG), denoting the materials composing the base and subbase layers, respectively. To investigate pavement-subgrade interaction, four GWT levels (120m, 60m, 30m, and 15m) were used to assess the structural performance of the analyzed flexible pavements taking into account the effect of the unsaturated behavior of the subgrade soil subjected to GWT rises from 120m to 15m depth. Based on the conditions outlined in the Algerian Manual for New Pavement Design (AMNPD), the numerical simulations were conducted using the advanced FLAC3D software. The results of computed von Mises stresses and induced deflections indicated that the loss of suction, due to GWT rise, can impose substantial additional loads on pavement structures. Further analysis using Alize-LCPC software revealed that a Groundwater Table rise from 120m to 15m could reduce the service duration by over 11 years for GB/GB and over 14 years for GB/NTG pavement structures. Moreover, regression models were developed to predict deflection and von Mises stresses with reliable accuracy (R² > 0.90). Regardless cost considerations, the study concludes that the GB/NTG pavement structure outperforms the GB/GB pavement structure in terms of durability and performance considering similar scenarios. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Flexible pavement؛ Subgrade؛ Service duration؛ Resilient modulus؛ Unsaturated soil | ||
مراجع | ||
[1] Serin S, Oguzhanoglu MA, Kayadelen C. Comparative analysis of stress distributions and displacements in rigid and flexible pavements via finite element method. Rev La Constr 2021;20:321–31. doi:10.7764/RDLC.20.2.321.
[2] Motamedi M, Shafabakhsh G, Azadi M. Rehabilitation of asphalt binder to improve rutting, fatigue and thermal cracking behavior using nano-silica and synthesized polyurethane. J Rehabil Civ Eng 2021;9:19–28. doi:10.22075/jrce.2019.17579.1335.
[3] Huang YH. Pavement analysis and design. 2nd ed. Pearson Prentice Hall Upper Saddle River, NJ; 2004.
[4] Papagiannakis A, Masad E. Pavement design and materials. Second edi. Hoboken, New Jersey: Wiley; 2024.
[5] Saevarsdottir T, Erlingsson S. Water impact on the behaviour of flexible pavement structures in an accelerated test. Road Mater Pavement Des 2013;14:256–77. doi:10.1080/14680629.2013.779308.
[6] Knott JF, Daniel JS, Jacobs JM, Kirshen P. Adaptation Planning to Mitigate Coastal-Road Pavement Damage from Groundwater Rise Caused by Sea-Level Rise. Transp Res Rec J Transp Res Board 2018;2672:11–22. doi:10.1177/0361198118757441.
[7] Toan TD, Long NH, Wong YD, Nguyen T. Effects of variability in thickness and elastic modulus on the reliability of flexible pavement structural performance. Int J Pavement Eng 2023;24. doi:10.1080/10298436.2022.2039923.
[8] Ji R, Siddiki N, Nantung T, Kim D. Evaluation of resilient modulus of subgrade and base materials in indiana and its implementation in MEPDG. Sci World J 2014;2014. doi:10.1155/2014/372838.
[9] Tiliouine B, Sandjak K. Influence of nonlinear resilient models of unbound aggregates on analysis and performance of road pavements. Period Polytech Civ Eng 2015;59:77–84. doi:10.3311/PPci.7092.
[10] Amakye SYO, Abbey SJ, Booth CA. DMRB Flexible Road Pavement Design Using Re-Engineered Expansive Road Subgrade Materials with Varying Plasticity Index. Geotechnics 2022;2:395–411. doi:10.3390/geotechnics2020018.
[11] Ghanizadeh AR, Ziaie A, Khatami SMH, Fakharian P. Predicting Resilient Modulus of Clayey Subgrade Soils by Means of Cone Penetration Test Results and Back-Propagation Artificial Neural Network. J Rehabil Civ Eng 2022;10:146–62. doi:10.22075/JRCE.2022.25013.1568.
[12] El-Hamrawy S, Abd El-Hakim R. Influence of Subgrade Stiffness on Flexible Pavement Responses – A Case Study-Alexandria City, Egypt. Bull Fac Eng Mansoura Univ 2020;40:49–56. doi:10.21608/bfemu.2020.96398.
[13] Elshaer M, Ghayoomi M, Daniel JS. Methodology to evaluate performance of pavement structure using soil moisture profile. Road Mater Pavement Des 2018;19:952–71. doi:10.1080/14680629.2017.1283356.
[14] Farahani HZ, Farahani A. Study on Drainage of Pavement Layers and Improvement Strategies: Case Study. J Rehabil Civ Eng 2023;11:111–26. doi:10.22075/JRCE.2022.25393.1575.
[15] Sawangsuriya A, Edil TB, Bosscher PJ. Modulus-suction-moisture relationship for compacted soils. Can Geotech J 2008;45:973–83. doi:10.1139/T08-033.
[16] Han Z, Vanapalli SK, Kutlu ZN. Modeling Behavior of Friction Pile in Compacted Glacial Till. Int J Geomech 2016;16. doi:10.1061/(asce)gm.1943-5622.0000659.
[17] Zhang J, Peng J, Zeng L, Li J, Li F. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties. Int J Pavement Eng 2021;22:732–9. doi:10.1080/10298436.2019.1643022.
[18] Rahardjo H, Melinda F, Leong EC, Rezaur RB. Stiffness of a compacted residual soil. Eng Geol 2011;120:60–7. doi:10.1016/j.enggeo.2011.04.006.
[19] Asadi M, Mallick R, Nazarian S. Numerical modeling of post-flood water flow in pavement structures. Transp Geotech 2021;27:100468. doi:10.1016/j.trgeo.2020.100468.
[20] Zhang J, Peng J, Li J, Zheng J. Variation of Resilient Modulus with Soil Suction for Cohesive Soils in South China. Int J Civ Eng 2018;16:1655–67. doi:10.1007/s40999-018-0315-y.
[21] Luo Q, Ye X, Li Q, Zhang S, Yu Q, Ma X. Experimental and Numerical Study on Response Characteristics of Airport Pavement Subjected to Wetting in Silt Subgrade. KSCE J Civ Eng 2023;27:551–66. doi:10.1007/s12205-022-0647-7.
[22] Elshaer M, Daniel JS. Impact of pavement layer properties on the structural performance of inundated flexible pavements. Transp Geotech 2018;16:11–20. doi:10.1016/j.trgeo.2018.06.002.
[23] Chen X, Wang H. Impact of sea level rise on asphalt pavement responses considering seasonal groundwater and moisture gradient in subgrade. Transp Geotech 2023;40:100992. doi:10.1016/j.trgeo.2023.100992.
[24] Knott JF, Elshaer M, Daniel JS, Jacobs JM, Kirshen P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp Res Rec 2017;2639:1–10. doi:10.3141/2639-01.
[25] ALI AM. Influences of water table elevation on structural performance of flexible pavement matrix with different subgrade soil types. 47th IRES Int. Conf., St. Petersburg, Russia: 2016, p. 27–31.
[26] Peng Y, He Y. Structural characteristics of cement-stabilized soil bases with 3D finite element method. Front Archit Civ Eng China 2009;3:428–34. doi:10.1007/s11709-009-0059-5.
[27] ITASCA. FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions—User’s Guide 2005.
[28] Sandjak K, Tiliouine B. 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements. Int J Civ Environ Eng 2018;12:765–72.
[29] CTTP. Catalogue de Dimensionnement des Chaussées Neuves—Fascicule I : Notice d’utilisation 2001.
[30] Papagiannakis AT, Masad EA. Pavement Design and Materials. 2012. doi:10.1002/9780470259924.
[31] Mulungye RM, Owende PMO, Mellon K. Finite element modelling of flexible pavements on soft soil subgrades. Mater Des 2007;28. doi:10.1016/j.matdes.2005.12.006.
[32] Losa M, Natale A Di. Strains in asphalt pavements under circular and rectangular footprints. Balt J Road Bridg Eng 2014;9:101–7. doi:10.3846/bjrbe.2014.13.
[33] Kleizienė R, Vaitkus A, Čygas D. Asfaldi viskoelastsete omaduste mõju katendi käitumisele. Balt J Road Bridg Eng 2016;11:313–23. doi:10.3846/bjrbe.2016.36.
[34] Oh WT, Vanapalli SK, Puppala AJ. Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils 2009;914:903–14. doi:10.1139/T09-030.
[35] Bouatia M. Numerical Analysis of Pipeline Behavior on High Unstable Unsaturated Slope. Case of AEP pipe of Ain Tinn-Mila. University of Mostefa Ben Boulaid - Batna 2, 2021.
[36] van Genuchten MT. A Closed‐form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci Soc Am J 1980;44:892–8. doi:10.2136/sssaj1980.03615995004400050002x.
[37] CTTP. Catalogue de Dimensionnement des Chaussées Neuves—Fascicule II : Hypothèses et données de dimensionnement 2001.
[38] CTTP. Catalogue de Dimensionnement des Chaussées Neuves—Fascicule III : Fiches techniques de dimensionnement 2001.
[39] Burmister DM. The general theory of stresses and displacements in layered soil systems. II. J Appl Phys 1945;16:126–7. doi:10.1063/1.1707562. | ||
آمار تعداد مشاهده مقاله: 211 تعداد دریافت فایل اصل مقاله: 8 |