
تعداد نشریات | 21 |
تعداد شمارهها | 628 |
تعداد مقالات | 9,179 |
تعداد مشاهده مقاله | 67,527,008 |
تعداد دریافت فایل اصل مقاله | 8,061,754 |
کنترلکننده فرکانس-بار تطبیقی برای سیستمهای قدرت بهمپیوسته با ترکیب کنترل پیشبین مدل و شناسایی سیستم | |
مدل سازی در مهندسی | |
دوره 23، شماره 80، فروردین 1404، صفحه 289-306 اصل مقاله (1.89 M) | |
نوع مقاله: مقاله پژوهشی | |
شناسه دیجیتال (DOI): 10.22075/jme.2024.32739.2591 | |
نویسندگان | |
مهدی رمضانی؛ محسن احمدنیا* ؛ احمد حاجی پور | |
دانشکده مهندسی برق و کامپیوتر، دانشگاه حکیم سبزواری، سبزوار، ایران | |
تاریخ دریافت: 02 دی 1402، تاریخ بازنگری: 31 تیر 1403، تاریخ پذیرش: 31 مرداد 1403 | |
چکیده | |
در این مقاله یک روش کنترل فرکانس-بار تطبیقی جدید بر مبنای کنترل پیشبین مدل با استفاده از فیلتر کالمن بیاثر بهبودیافته معرفی شده است. هدف از این پژوهش، طراحی یک کنترلکننده مقاوم در برابر تغییرات در مشخصه فرکانسی سیستمهای قدرت است. یک کنترلکننده پیشبین مدل تطبیقی با بروزرسانی آنلاین مدل پیشبینی برای بازتولید مشخصههای فرکانسی اساسی سیستم هدف طراحی شد. یک مدل پیشبینی ساده شده در بررسیهای اولیه عملکرد حلقه بسته سیستم قدرت شناسایی شد. سپس، تخمین پارامترهای مدل مذکور با توجه به سنجشهای زمان-حقیقی به دست آمد. علاوه بر آن، دنباله کنترلی با استفاده از توابع لاگر تقریب زده میشود که به کاهش بیشتر بار محاسباتی کمک میکند. یک سیستم آزمایشی سه-ناحیهای در حضور قید نرخ تولید و باند مرده برای شبیهسازیها در نظر گرفته شد تا کارایی طرح پیشنهادی اثبات شود. نتایج شبیهسازیها نشان میدهد که روش کنترل پیشبین مدل پیشنهادی میتواند بطور موفقیتآمیزی انحرافات فرکانسی حاصل از اغتشاشات بار را میرا کند و نسبت به تغییرات پارامتری مقاوم است. | |
کلیدواژهها | |
کنترل پیشبین مدل تطبیقی؛ فیلتر کالمن بیاثر بهبودیافته؛ کنترل فرکانس-بار؛ شناسایی مدل | |
عنوان مقاله [English] | |
An Adaptive Load-Frequency Controller for Interconnected Power Systems Combining Model Predictive Control and System Identification | |
نویسندگان [English] | |
Mehdy Ramezany؛ Mohsen Ahmadnia؛ Ahmad Hajipoor | |
Faculty of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran | |
چکیده [English] | |
This paper introduces a new adaptive load frequency control method based on model predictive control using an improved unscented Kalman filter. This research aims to design a robust controller for changes in the frequency characteristic of power systems. An adaptive model predictive controller with online updating of the predictive model is designed to reproduce the fundamental frequency characteristics of the target system. A simplified predictive model is identified in the preliminary investigations of the closed-loop performance of the power system. Then, the parameters of this model are estimated according to real-time measurements. In addition, the control sequence is approximated using Laguerre functions, which helps to reduce the computational load further. A three-zone test system in the presence of generation rate constraint and dead-band is considered for simulation to prove the effectiveness of the proposed scheme. The simulation results show that the proposed adaptive control scheme can successfully stabilize frequency deviations caused by load disturbances and is robust against parameter uncertainties. | |
کلیدواژهها [English] | |
Adaptive model predictive control, Improved unscented kalman filter, Load frequency control, Model identification | |
مراجع | |
[1] D. Zhang. "Research on AGC performance during wind power ramping based on deep reinforcement learning." IEEE Access 8, (2020): 107409–107418.
|
|
[2] J. Li, T. Yu, H. Zhu, F. Li, D. Lin, and Z. Li. "Multi-agent deep reinforcement learning for sectional AGC dispatch." IEEE Access 8 (2020): 158067-158081.
|
|
[3] F. Zhang, Z. Hu, K. Meng, L. Ding, and Z. Dong. "HESS sizing methodology for an existing thermal generator for the promotion of AGC response ability." IEEE Transactions on Sustainable Energy 11, no. 2 (2019): 608-617.
|
|
[4] D.K. Chaturvedi, P.S. Satsangi, and P.K. Kalra. "Load frequency control: a generalized neural network approach." International Journal of Electrical Power & Energy Systems 21, no. 6 (1999): 405–415.
|
|
[5] H. Bevrani, T. Hiyama, Y. Mitani, and K. Tsuji. "Load Frequency Regulation under a Bilateral LFC Scheme using Flexible Neural Networks." International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications 14, no. 2 (2006): 109–117.
|
|
[6] A.B. Rehiara, H. Chongkai, Y. Sasaki, N. Yorino, and Y. Zoka. "An adaptive IMC-MPC controller for improving LFC performance." In 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), pp. 1-6. IEEE, 2017.
|
|
[7] Z. Qiu, M. Santillo, J. Sun, and M. Jankovic. "Enhanced Composite Adaptive IMC for Boost Pressure Control of a Turbocharged Gasoline Engine." In American Control Conference (ACC), Boston, MA, 2016.
|
|
[8] A.B. Rehiara, H. Chongkai, Y. Sasaki, N. Yorino, and Y. Zoka. "An adaptive internal model for load frequency control using extreme learning machine." TELKOMNIKA (Telecommunication Computing Electronics and Control) 16, no. 6 (2018): 2879-2887.
|
|
[9] J. Guo. "Application of a Novel Adaptive Sliding Mode Control Method to the Load Frequency Control," European Journal of Control 57, (2021): 172–178.
|
|
[10] A.E. Onyeka, Y. Xing‐Gang, Z. Mao, B. Jiang, and Q. Zhang. "Robust decentralised load frequency control for interconnected time delay power systems using sliding mode techniques." IET Control Theory & Applications 14, no. 3 (2020): 470-480.
|
|
[11] C.F. Juang. "Load-frequency Control by Hybrid Evolutionary Fuzzy Pl controller." IEE Proceedings - Generation Transmission and Distribution 153, no. 2 (2006): 196–204.
|
|
[12] C. Chang, and Weihui Fu, "Area Load Frequency Control using Fuzzy Gain Scheduling of PI Controller," Electric Power Systems Research 42, no. 2 (1997): 145–152.
|
|
[13] M. Han, and X. Kong. "Distributed MPC of the standalone hybrid wind and solar generation system based on neural network modeling." In 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016.
|
|
[14] H. Wang, Z. Lei, X. Zhang, J. Peng, and H. Jiang. "Multiobjective reinforcement learning-based intelligent approach for optimization of activation rules in automatic generation control." IEEE Access 7 (2019): 17480-17492.
|
|
[15] V.V. Gautam, R. Loka, and A.M. Parimi. "Cubature Kalman filter and linear quadratic regulator for load frequency control." Electric Power Systems Research 222 (2023): 109509.
|
|
[16] A.B. Kunya. "Hierarchical bi-level load frequency control for multi-area interconnected power systems." International Journal of Electrical Power & Energy Systems 155 (2024): 109600.
|
|
[17] H.K. Sahoo, and P.K. Dash. "Robust Estimation of Power Quality Disturbance using Unscented H∞ Filter." International Journal of Electrical Power & Energy Systems 73, (2015): 438–447.
|
|
[18] M. Liu, F. Bizzarri, A.M. Brambilla, and F. Milano. "On the Impact of the Dead-Band of power System Stabilizers and Frequency regulation on Power System Stability." IEEE Transactions on Power Systems 34, no. 5 (2019): 3977–3979.
|
|
[19] J. Morsali, K. Zare, and M. Tarafdar Hagh. "AGC of Interconnected Multi-source Power System with Considering GDB and GRC Nonlinearity Effects." In 2016 6th Conference on Thermal Power Plants (CTPP), pp. 12-17. IEEE, 2016.
|
|
[20] L. Jiang, W. Yao, Q.H. Wu, J.Y. Wen, and S.J. Cheng. "Delay-dependent stability for load frequency control with constant and time-varying delays." IEEE Transactions on Power Systems 27, no. 2 (2011): 932-941.
|
|
[21] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, US, 2000.
|
|
[22] C. Huang, M. Yang, H. Ge, S. Deng, and C. Chen. "DMPC-based load frequency control of multi-area power systems with heterogeneous energy storage system considering SoC consensus." Electric Power Systems Research 228 (2024): 110064.
|
|
[23] G. Cai, C. Jiang, D. Yang, X. Liu, S. Zhou, Z. Cao, C. Liu, and Z. Sun. "Data-driven predictive based load frequency robust control of power system with renewables." International Journal of Electrical Power & Energy Systems 154 (2023): 109429.
|
|
[24] A.M. Ersdal, L. Imsland, K. Uhlen, D. Fabozzi, and N.F. Thornhill. "Model predictive load–frequency control taking into account imbalance uncertainty." Control Engineering Practice 53 (2016): 139-150.
|
|
[25] M.A Mohamed, A.A. Zaki Diab, H. Rezk, and T. Jin. "A novel adaptive model predictive controller for load frequency control of power systems integrated with DFIG wind turbines." Neural Computing and Applications 32, (2020): 7171–7181.
|
|
[26] T.H. Mohamed, J. Morel, H. Bevrani, and T. Hiyama. "Model predictive based load frequency control design concerning wind turbines." International Journal of Electrical Power & Energy Systems 43, (2012): 859–867.
|
|
[27] R. Patel, L. Meegahapola, L. Wang, X. Yu, and B. McGrath. "Automatic generation control of multi-area power system with network constraints and communication delays." Journal of Modern Power Systems and Clean Energy 8, no. 3 (2019): 454-463.
|
|
[28] J. Qi, K. Sun, J. Wang, and H. Liu. "Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filer with Enhanced Numerical Stability." IEEE Transactions on Smart Grid 9, no. 2 (2018): 1184–1196.
|
|
[29] A.B. Rehiara, N. Yorino, Y. Sasaki, and Y. Zoka. "A Novel Adaptive LFC Based on MPC Method." IEEJ Trans. Electr. Electronic Eng. 14, no. 8 (2019): 1145–1152.
|
|
[30] Pr. Bhui, N. Senroy, A.K. Singh, and B.C. Pal. "Estimation of Inherent Governor Dead Band and Regulation Using Unscented Kalman Filter." IEEE Transactions on Power Systems 33, no. 4 (2018): 3546–3558.
|
|
[31] R.G. Jacquot. Modern Digital Control Systems (Electrical and Computer Engineering), Corona Press, 2015.
|
|
[32] E. Wan, and R. Van Der Merwe. "The Unscented Kalman Filter for Nonlinear Estimation." In Proceedings of the IEEE 2000 Adaptive System For Signal Processing, Lake Louise, AB, Canada, 2000.
|