
تعداد نشریات | 21 |
تعداد شمارهها | 632 |
تعداد مقالات | 9,260 |
تعداد مشاهده مقاله | 67,743,131 |
تعداد دریافت فایل اصل مقاله | 8,157,468 |
Modeling Aeroelastic Vibration Dampening in Wind Turbine Blades using Piezoelectric Materials | ||
Mechanics of Advanced Composite Structures | ||
مقاله 16، دوره 12، شماره 3 - شماره پیاپی 26، بهمن 2025، صفحه 685-694 اصل مقاله (896.16 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22075/macs.2025.32211.1580 | ||
نویسندگان | ||
Hadja Yakoubi* 1؛ Aida Cherif2؛ Mounir Meddad2؛ Issam Meghlaoui2؛ Nabil Derbel3 | ||
1LMSE laboratory, Mohammed El Bachir ElIbrahimi University, Bordj Bou Arreridj, Algeria | ||
2Electromechanical Department, Mohammed El Bachir ElIbrahimi University, Bordj Bou Arreridj, Algeria | ||
3National School of Engineers, Sfax, Tunisia | ||
تاریخ دریافت: 15 آبان 1402، تاریخ بازنگری: 12 دی 1403، تاریخ پذیرش: 19 بهمن 1403 | ||
چکیده | ||
Aeroelastic vibrations, caused by the complex interaction between aerodynamic forces and the structural dynamics of wind turbine blades, are a major contributor to fatigue, structural damage, reduced efficiency, and increased maintenance costs in wind turbine systems. Addressing this issue is critical for enhancing wind turbine’s operational performance, durability, and lifespan, making vibration control a key focus in the renewable energy industry. This paper investigates the Synchronized Switch Damping (SSD) modal method, a nonlinear control technique specifically chosen for its ability to efficiently mitigate aeroelastic vibrations by targeting and suppressing unwanted vibration modes. By synchronizing a piezoelectric component with a designated electrical circuit in harmony with the blade's movement, the SSD modal method provides precise and adaptive vibration control. Our study demonstrates the effectiveness of the Semi-active Modal SSD approach, achieving a notable 30.42% reduction in blade vibration. This substantial reduction enhances not only the overall performance but also the longevity of wind turbine blades, offering a significant advancement in vibration control strategies and contributing to the development of more reliable and efficient wind energy systems. | ||
کلیدواژهها | ||
Wind turbine blades؛ Aerodynamic forces؛ SSDI modal؛ Vibration control؛ Piezoelectric materials | ||
مراجع | ||
[1] Erkan, O., Özkan, M., Karakoç, T.H., Garrett, S.J. and Thomas, P.J., 2020. Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method. Renewable Energy, 161, pp. 1359-1367. [2] Yang, W., Kim, K.H. and Lee, J., 2022. Upcycling of decommissioned wind turbine blades through pyrolysis. Journal of Cleaner Production, 376, 134292. [3] Yang, B. and Sun, D., 2013. Testing, inspecting and monitoring technologies for wind turbine blades: A survey. Renewable and Sustainable Energy Reviews, 22, pp. 515-526. [4] Debbache, M., 2018. Amélioration de la performance de pale éolienne par considération des paramètres locaux et prend en compte les phénomènes des pertes. Doctoral dissertation, Université Mohamed Khider Biskra. [5] Rašuo, B., Dinulović, M., Veg, A., Grbović, A. and Bengin, A., 2014. Harmonization of new wind turbine rotor blades development process: A review. Renewable and Sustainable Energy Reviews, 39, pp. 874-882. [6] Mirkov, N., Rašuo, B. and Kenjereš, S., 2015. On the improved finite volume procedure for simulation of turbulent flows over real complex terrains. Journal of Computational Physics, 287, pp. 18-45. [7] Rašuo, B., 2010. Experimental study of structural damping of composite helicopter blades with different cores. Plastics, Rubber and Composites, 39(1), pp. 1-5. [8] Rašuo, B., 2018. On structural damping of composite aircraft structures. [9] Cong, C., 2017. Active control of edgewise vibrations in wind turbine blades using stochastic disturbance accommodating control. [10] Gao, R., Yang, J., Yang, H. and Wang, X., 2023. Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions. Renewable Energy, 219, 119539. [11] Biglari, H. and Fakhari, V., 2020. Edgewise vibration reduction of small size wind turbine blades using shunt damping. Journal of Vibration and Control, 26(3-4), pp. 186-199. [12] Awada, A., Younes, R. and Ilinca, A., 2021. Review of vibration control methods for wind turbines. Energies, 14(11), 3058. [13] Chakhchaoui, N., Jaouani, H., Ennamiri, H., Eddiai, A., Hajjaji, A., Meddad, M. et al., 2019. Modeling and analysis of the effect of substrate on the flexible piezoelectric films for kinetic energy harvesting from textiles. Journal of Composite Materials, 53(24), pp. 3349-3361. [14] Farhan, R., Eddiai, A., Meddad, M., Mazroui, M. and Guyomar, D., 2019. Electromechanical losses evaluation by an energy-efficient method using the electrostrictive composites: experiments and modeling. Smart Materials and Structures, 28(3), 035024. [15] Meddad, M., Eddiai, A., Hajjaji, A., Boughaleb, Y., Guyomar, D. and Fliyou, M., 2014. Optimization of the energy harvested by the effect of strain and frequency on an electrostrictive polymer composite. Synthetic Metals, 188, pp. 72-76. [16] Meddad, M., Eddiai, A., Guyomar, D., Belkhiat, S., Hajjaji, A., Cherif, A. and Boughaleb, Y., 2012. Study of the behaviour of electrostrictive polymers for energy harvesting with FFT analysis. Journal of Optoelectronics and Advanced Materials, 14(1-2), pp. 55-60. [17] Harari, S., Richard, C. and Gaudiller, L., 2009. Semi-active control of a targeted mode of smart structures submitted to multimodal excitation. In: Motion and Vibration Control, Dordrecht: Springer, pp. 113-122. [18] Bahl, S., Nagar, H., Singh, I. and Sehgal, S., 2020. Smart materials types, properties, and applications: A review. Materials Today: Proceedings, 28, pp. 1302-1306. [19] Rupitsch, S.J., 2019. Simulation of piezoelectric sensor and actuator devices. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering, pp. 83-126. [20] Chérif, A., Richard, C., Guyomar, D., Belkhiat, S., Meddad, M., Eddiai, A. and Hajjaji, A., 2013. Modal SSDI-Max technique of a smart beam structure: Broadband excitation. Journal of Optoelectronics and Advanced Materials, 15(May-June), pp. 438-446. [21] Chérif, A., Attoui, H., Zehar, D. and Behih, K., 2017. Improved vibration control of a smart beam by energy transfer. International Journal of Latest Trends in Engineering and Technology, 8(4), pp. 86-93. [22] Asanuma, H. and Komatsuzaki, T., 2020. Nonlinear piezoelectricity and damping in partially-covered piezoelectric cantilever with self-sensing synchronized switch damping on inductor circuit. Mechanical Systems and Signal Processing, 144, 106867. [23] Wu, D., 2013. Piezoelectric semi-active networks for structural vibration damping with energy redistribution. Doctoral dissertation, Lyon, INSA. [24] Schubel, P.J. and Crossley, R.J., 2012. Wind turbine blade design. Energies, 5(9), pp. 3425-3449. [25] El Mouhsine, S., Oukassou, K., Ichenial, M.M., Kharbouch, B. and Hajraoui, A., 2018. Aerodynamics and structural analysis of wind turbine blade. Procedia Manufacturing, 22, pp. 747-756. [26] Wood, D., 2011. Small wind turbines. In: Advances in Wind Energy Conversion Technology. Berlin, Heidelberg: Springer, pp. 195-211. [27] Wang, Y., Liang, M. and Xiang, J., 2014. Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information. Mechanical Systems and Signal Processing, 48(1-2), pp. 351-367. [28] Optimisation et régulation des puissances d’une éolienne à base d’une MADA, 2009. Mémoire de magister, École Nationale Supérieure Polytechnique d’Alger. [29] Chérif, A., Richard, C., Guyomar, D., Belkhiat, S. and Meddad, M., 2012. Simulation of multimodal vibration damping of a plate structure using a modal SSDI-Max technique. Journal of Intelligent Material Systems and Structures, 23(6), pp. 675-689 [30] Harari, S., Richard, C. and Gaudiller, L., 2009. New semi-active multi-modal vibration control using piezoceramic components. Journal of Intelligent Material Systems and Structures, 20(13), pp. 1603-1613. [31] Meddad, M., Eddiai, A., Cherif, A., Guyomar, D. and Hajjaji, A., 2016. Enhancement of electrostrictive polymer power harvesting using new technique SSHI-Max. Optical and Quantum Electronics, 48(2), pp. 1-10. [32] Silva, T., Tan, D., De Marqui, C. and Erturk, A., 2019. Vibration attenuation in a nonlinear flexible structure via nonlinear switching circuits and energy harvesting implications. Journal of Intelligent Material Systems and Structures, 30(7), pp. 965-976. [33] Li, K., 2011. Amortissement vibratoire avec échange d’énergie synchronisé entre des éléments piézoélectriques. Doctoral dissertation, INSA de Lyon. [34] Harari, S., 2009. Contrôle modal semi-actif et actif à faible consommation énergétique par composants piézoélectriques. Doctoral dissertation, INSA de Lyon. [35] Richard, T., 2007. Diminution du coefficient de transmission acoustique d'une paroi à l'aide d'amortisseurs piézoélectriques semi-passifs. Doctoral dissertation, INSA de Lyon. | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 157 |