
تعداد نشریات | 21 |
تعداد شمارهها | 640 |
تعداد مقالات | 9,346 |
تعداد مشاهده مقاله | 67,981,238 |
تعداد دریافت فایل اصل مقاله | 26,216,008 |
تأثیر عملی افزایش تراکم بستر ساختگاه ناشی از کوبش شمع بر کاهش استعداد روانگرایی آن | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 7، دوره 11، شماره 1 - شماره پیاپی 41، فروردین 1404، صفحه 109-126 اصل مقاله (2.51 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2025.36354.1709 | ||
نویسندگان | ||
محمد تقی منصوری کیا* 1؛ حمید رضا شیبانی2؛ الهام رجبی2 | ||
1دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران و مدیر طرحهای توسعه سد و نیروگاه، سازمان آب و برق خوزستان، ایران. | ||
2استادیار، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران. | ||
تاریخ دریافت: 09 دی 1403، تاریخ بازنگری: 28 بهمن 1403، تاریخ پذیرش: 30 بهمن 1403 | ||
چکیده | ||
در این تحقیق، از یک روش بر مبنای عدد SPT جهت ارزیابی استعداد روانگرایی لایههای ماسهای محل ساختگاه پروژه سد و قفل کشتیرانی مارد خرمشهر برای حمل و نقل رودخانهای استفاده شده است. برای ارزیابی استعداد روانگرایی بخش ریزدانه، روش دیگری بهکار رفته است. برای زلزلههای سطح 1 و سطح 2 (با دورههای بازگشت 75 و 475 سال)، حد مجاز برای ضریب اطمینان در برابر روانگرایی بهترتیب برابر 5/1 و 1/1 فرض شده است. تعداد ضربات منجر به کوبش هر یک متر از طول تمام شمعها در ساختگاه محاسبه شده است. تراکم بهوجود آمده ناشی از کوبش شمعهای سری اول معمولاً سبب افزایش تعداد ضربات لازم برای کوبش شمعهای سری دوم شده است. نسبت افزایش تعداد ضربات لازم برای کوبش شمعها در دو حالت شمعهای سری دوم نسبت به سری اول برابر نسبت افزایش عدد SPT فرض گردیده است. سپس، محاسبات تعیین ضریب اطمینان در برابر روانگرایی مجدداً با اعداد جدید SPT انجام شده است. بهکارگیری روش مورد اشاره، کاهش سطوح و عمقهای مستعد روانگرایی ناشی از تراکم لایهها پس از کوبش شمعها را نشان میدهد. در ساختگاه سد و قفل کشتیرانی مارد، افزایش نسبی عدد SPT نزدیک به 20 درصد بوده است. لذا روش پیشنهادی سبب کاهش 8 درصدی محدودههای مستعد روانگرایی شده است. ضمناً، در محدودههایی که در مطالعات فاقد استعداد روانگرایی تشخیص داده ولی ضریب اطمینان کمی داشتهاند نیز افزایش تقریباً 5/9 درصدی ضریب اطمینان در برابر روانگرایی رخ داده است. روش پیشنهادی با افزایش نسبی عدد SPT میتواند منجر به افزایش دقت محاسبات روانگرایی در ساختگاهها گردد. | ||
کلیدواژهها | ||
کاهش استعداد روانگرایی؛ اصلاح خاک؛ شمع های پیش ساخته | ||
عنوان مقاله [English] | ||
Practical Effect of Increasing the Density of Construction Site Due to Pile Driving on Reducing Its Liquefaction Potential | ||
نویسندگان [English] | ||
Mohammad Taghi Mansouri Kia1؛ Hamid Reza Sheibani2؛ Elham Rajabi2 | ||
1PhD student, Department of Technology and Engineering, Payame Noor University, Tehran, Iran and Manager of Dam and Power Plant Development Projects, K.W.P.A, Iran. | ||
2Assistant Professor, Department of Technology and Engineering, Payame Noor University, Tehran, Iran. | ||
چکیده [English] | ||
In this research, One method, based on the SPT test number, was used to evaluate liquefaction potential of the sand layers for river navigation at the Khorramshahr dam and shipping lock construction site. For fine-grained layers, another method have been used. For level 1 and level 2 earthquakes (with return periods of 75 and 475 years), the limit to ensure against the risk of liquefaction is assumed to be 1.5 and 1.1. For each pile, the number of blows to penetrate each meter of their length is calculated. Normaly, the compression caused by striking the first series of piles has increased the number of blows required to penetrate the second series of piles. The ratio of the increase in the number of blows necessary to penetrate each pile of the second series relative to the first series has been calculated. The obtained increase rate is assumed to be equal to the increase of SPT number. Calculations to determine the safety factor against liquefaction have been done again with new SPT numbers. Application of the proposed method shows reduction of the levels and depths of liquefaction caused by the density of layers due to penetration of the piles. In the example case (Mard dam and its ship), the relative increase of SPT number was nearly 20 percent. Therefore, the proposed method has reduced the liquefaction zones by 8%. In addition, in the areas that have been diagnosed as low liquefaction potential in the studies, but had a low confidence factor, a 9.5% increase in the confidence factor against liquefaction has also occurred. By increasing the SPT number, the proposed method can increase the accuracy of liquefaction calculations in the sites. | ||
کلیدواژهها [English] | ||
Reducing of liquefaction, soil improvement, prefabricated piles | ||
مراجع | ||
Andrews, D. C. A. and Martin, G. R. 2000. “Criteria for liquefaction of silty sands”. World Conference on Earthquake Engineering, 12WCEE, Auckland, New Zealand.
Bolton Seed, H., Idriss, I. M. and Arango, I. 1983. “Evaluation of liquefaction potential using field performance data”. J. Geotech. Eng., 109(3): 458-482.
Cubrinovski, M. and Robinson, K. 2016. “Lateral spreading: Evidence and interpretation from the 2010–2011 Christchurch earthquakes”. Soil Dynamics and Earthquake Engineering. 91: 187-201.
Elgamal, A. 2005. “Liquefaction-induced settlement of shallow foundations and remediation: 3D numerical simulation”. Earthq. Eng., 9: 17-45.
Elgamal, A. W., Zeghal, M. and Parra, E. 1996. “Liquefaction of reclaimed island in Kobe”. J. Geotech. Eng., 122: 39-49.
Español-Espinel, C. 2023. “Liquefaction analysis of soil plugs within large diameter monopiles using numerical modelling”. Bull. Earthq. Eng., 21(12): 5443-5458.
Fadaei, S. and Hamidi, A. 2024. “Numerical evaluation of liquefaction during vibratory pile driving in saturated sand”. Transport. Infrastruct. Geotech., 17: 1-23.
Fatima, T. 2023. “A review on impacts and mitigation of liquefaction of soil around the tunnels”. Failure Anal. Prev., 23: 1822-1840.
Ford, L. E. and Poeppel, A. R. 2021. “Soil densification by driven piles to reduce liquefaction potential”. International Foundations Congress and Equipment Expo 2021.
Guan, Z. and Wang, Y. 2022. “Assessment of liquefaction-induced differential ground settlement and lateral displacement using standard penetration tests with consideration of soil spatial variability”. Geotech. Geoenviron. Eng., 148: 402-421.
Huang, D. 2020. “Effectiveness of pile reinforcement in liquefied ground”. Earthq. Eng., 24(8): 1222-1244.
Hussien, R. S. and Albusoda, B. S. 2022. “A review of the performance of piles in liquefiable soil”. Association of Arab Universities J. Eng. Sci., 29(3): 01-11.
Idriss, I. M. and Boulanger, R. W. 2007. “SPT and CPT-based relationships for the residual shear strength of liquefied soils”. International Conference on Earthquake Geotechnical Engineering, Dordrecht, The Netherlands.
JRA. 2019. “Japan Road Association for Highway Bridges”, Part V, Seismic Design.
Khorashadizadeh, M., Hosseini, M. A. and Saeedi Azizkandi, A. 2023. “Performance of finned piles as a protection for a 2×2 group pile subjected to liquefaction-induced lateral spreading: A shake table investigation”. Soil Dyn. Earthq. Eng., 170: 107-115.
Li, W., Chen, Y., Stuedlein, A. W., et al. 2018. “Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading”. Soil Dyn. Earthq. Eng., 109: 273-281.
Liao, S. S. C. and Whitman, R. V. 1986. “Catalogue of liquefaction and non-liquefaction occurrences during earthquakes”. Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mansouri Kia, M. T., Sheybani, H. R. and Hoback, A. 2024.“Determination of vessel unit number in river transportation”. Hydrophys., 9(2), 89-104.
Mele, L., Lirer, S. and Flora, A. 2024. “Induced partial saturation: From mechanical principles to engineering design of an innovative and eco-friendly countermeasure against earthquake-induced soil liquefaction”. Geosci., 14(6): 140.
Reddy, C. N. V. S., Eswara Rao, S. and Harika, A. 2023. “A study on the effect of field procedure corrections of SPT-N values on the liquefaction resistance of the subsoil strata along the coastline of Visakhapatnam”. Geotech. Eng., 54(3): 50-66.
Roy, J., Rollins, K. M., et al. 2023. “A comparative study of the dpt and cpt in evaluating liquefaction potential for gravelly soil at the port of Wellington, New Zealand”. Geotech. Geoenviron. Eng., 149(11).
Saeedi, M., Dehestani, M., et al. 2018. “Numerical analysis of pile-soil system under seismic liquefaction”. Eng. Failure Anal., 94: 96-108.
Sahil Omid Iranian. and Lar, M. 2024. “Tectonics and seismicity report and project presentation and special accelerogram for construction”. Technical Report of Soil Liquefaction Assessment, 187: 139. [In Persian]
Seed, R. B., Cetin, K. O., et al. 2003. “Recent advances in soil liquefaction engineering: A unified and consistent framework”. Annual ASCE Geotechnical Spring Seminar, Los Angeles, USA, pp. 589-626.
Sheikh, D. 2019. “The effect of liquefaction in depth on the seismic ground motion”. M.Sc. Thesis, Faculty of Civil Engineering, Shahrood University of Technology, Iran. [In Persian]
Singh, S. V. and Ghani, S. 2024. “A smarter approach to liquefaction risk: harnessing dynamic cone penetration test data and machine learning for safer infrastructure”. Front. Built Environ., 10: 149-154.
Takata, M. M., Sassa, S., et al. 2024. “The new compaction grouting method with improved upheaval control and enhanced liquefaction countermeasure effect”. International Ocean and Polar Engineering Conference, Liege, Belgium.
Thakur, I. C. and Roy, L. B. 2024. “An overview of liquefaction mitigation countermeasures”. Earth and Environmental Science Conference, The University of Texas, Austin, USA.
Turner, B. J., Brandenberg, S. J. and Stewart, J. P. 2016. “Case study of parallel bridges affected by liquefaction and lateral spreading”. Geotech. Geoenviron. Eng., 142: 50-61.
Wang, W. 1979. “Some Findings in Soil Liquefaction”. Research Report, Water Conservancy and Hydroelectric Power Scientiific Research Institute, Beijing, China.
Youd, T. L. and Idriss, I. M. 2001. “Liquefaction resistance of soils: summary from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”. Geotech. Eng., 127: 297-313.
Zachariah, J. P. and Jakka, R. S. 2024. “State-of-the-art review on utilization of waste materials in the mitigation of soil liquefaction”. Indian Geotech. Eng., 29(2): 1-20.
Zhan, J., Chen, J., et al. 2024. “In situ investigation on pore-water pressure response during vibratory pile driving with high frequency”. Acta Geotech., 19(5): 2649-2668. | ||
آمار تعداد مشاهده مقاله: 303 تعداد دریافت فایل اصل مقاله: 19 |