
تعداد نشریات | 21 |
تعداد شمارهها | 640 |
تعداد مقالات | 9,346 |
تعداد مشاهده مقاله | 67,981,286 |
تعداد دریافت فایل اصل مقاله | 26,223,445 |
بررسی تغییرات شیمیایی قیر پیرشده بر اثر افزودن مقادیر بهینهسازی شده جوانسازها با توجه به قطبیت جوانسازها | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 1، دوره 11، شماره 1 - شماره پیاپی 41، فروردین 1404، صفحه 1-20 اصل مقاله (2.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2025.35346.1692 | ||
نویسندگان | ||
منصور فخری* 1؛ علیرضا علوی2؛ مرتضی قنبری2 | ||
1استاد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران. | ||
2دانشکده عمران دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران. | ||
تاریخ دریافت: 12 مهر 1403، تاریخ بازنگری: 18 اسفند 1403، تاریخ پذیرش: 16 فروردین 1404 | ||
چکیده | ||
مکانیزیم پیرشدگی قیر یکی از مشکلاتی است که در قیر به وجود میآید و باعث سختشدگی و اکسیداسیون قیر میشود. یکی از روشهای جلوگیری از پیرشدگی، استفاده از جوانسازهای مختلف در قیر است. از طرف دیگر، محاسبه میزان دقیق مواد افزودنی در قیر یکی از چالشهای موجود شناخته میشد چرا که در مطالعات گذشته، درصد مناسب مواد افزودنی عمدتاً بر اساس مقادیر نفوذ و نقطه نرمی تعیین میشد که هیچگونه مشخصه قیر و جوانساز را در نظر نمیگیرد و همچنین دقت کافی برای استفاده در قیر را ندارد. در مطالعه پیش رو، سه جوانساز مختلف شامل روغن ضایعات پختوپز (WCO)، روغن ضایعات موتور خودرو (WEO) و روغن آروماتیک استفاده شده است تا علاوه بر بازیابی بخشی از خواص از دست رفته قیر، برخی از نگرانیهای محیطزیستی موجود مبنی بر دفع روغن ضایعات موتور خودرو و روغن ضایعات پختوپز را حل کند. همچنین، برای محاسبه دقیق مقادیر جوانسازها با بهرهگیری از مقادیر جزء قطبی آزمایش انرژی آزاد سطحی (SFE)، شاخص نفوذپذیری و درجه نفوذ قیر، نتایج متفاوتی حاصل شد. برای محاسبه مقادیر بهینه جوانسازها از روش سطح پاسخ (RSM) استفاده شد. پس از مشخص شدن مقادیر بهینه، نمونههای بهینهسازی شده ساخته و با استفاده از طیفسنج فروسرخ تبدیل فوریه (FTIR) بررسی شدند. در این مرحله، با محاسبه چهار شاخص مهم و حیاتی برای قیر، میزان تأثیر قطبیت جوانسازها بر قیر مشخص شد. روغن آروماتیک حدود ۶۰ درصد شاخص کربونیل و ۶۷ درصد شاخص سولفوکسید را کاهش داد و بیشترین تأثیر را در بهبود شاخصهای ذکر شده ایجاد کرد. روغن ضایعات پختوپز با افزایش ۱۱۴ درصدی بیشترین افزایش نسبت مالتین به آسفالتین و با ۶۸ درصد بیشترین کاهش در نسبت اکسیداسیون را داشت، در حالی که روغن ضایعات موتور خودرو با ۷۴ درصد افزایش نسبت مالتین به آسفالتین و ۵۵ درصد کاهش اکسیداسیون کمترین تأثیر را نشان داد. نتایج موجود نشاندهنده تأثیر زیاد پارامتر قطبیت بر اصلاح خواص قیر است. لذا باید تأثیرات قطبیت جوانسازهای موجود پیش از استفاده آنها در قیر مورد بررسی قرار بگیرد. | ||
کلیدواژهها | ||
اکسیداسیون؛ نسبت مالتین به آسفالتین؛ شاخص سولفوکسید؛ شاخص کربونیل؛ روش سطح پاسخ؛ طیفسنج فروسرخ تبدیل فوریه | ||
عنوان مقاله [English] | ||
Investigation of the Chemical Effects of Polarity-Optimized Rejuvenators on Aged Binders | ||
نویسندگان [English] | ||
Mansour Fakhri1؛ Alireza Alavi2؛ Morteza Ghanbari2 | ||
1Professor, Department of Road and Transportation, Faculty of Civil Engineering, K. N. Toosi University, Tehran, I. R. Iran. | ||
2Faculty of Civil Engineering, K. N. Toosi University, Tehran, I. R. Iran. | ||
چکیده [English] | ||
The aging mechanism of asphalt binder is one of the most important challenges in pavement structures, which causes hardening and oxidation of the binder. Although the incorporation of rejuvenators is the well-known method to mitigate this problem, finding optimal dosage of rejuvenators is an important challenge. Previous studies mainly determined the suitable dosages of rejuvenators based on penetration grade and softening point values, without paying attention to the chemical characteristics of the binder and rejuvenators. In this study, three different rejuvenators including waste cooking oil (WCO), waste engine oil (WEO), and aromatic extract oil were used. This approach aimed to restore the aged binder's properties and address the existing environmental concerns regarding the disposal of waste oils. The polar components of surface free energy (SFE) were evaluated alongside penetration index and penetration grade values to calculate the accurate dosages of these rejuvenators. The optimal dosages were also determined by employing the response surface methodology (RSM). After identifying the optimal dosages, the resulting samples were analyzed by using Fourier-transform infrared spectroscopy (FTIR). At this stage, four chemical indices were used to measure the influence of polarity of rejuvenators on binder. The results showed that aromatic extract oil could reduce the carbonyl index by about 60% and the sulfoxide index by 67%, as the most effective rejuvenator for decreasing these indices. Waste cooking oil showed the highest performance for modifying maltene-to-asphaltene parameters and oxidation, for increasing the maltene-to-asphaltene ratio by 114% and reducing the oxidation ratio by 68%. In contrast, waste engine oil, as the least effective rejuvenator, increased the maltene-to-asphaltene ratio by 74% and reduced oxidation by 55%. These results revealed that optimization based on rejuvenator polarities has significant effects on resorting the binder characteristics. | ||
کلیدواژهها [English] | ||
Oxidation, Maltene-to-asphaltene -ratio, Sulfoxide index, Carbonyl index, RSM, FTIR | ||
مراجع | ||
Akinleye, M., Jimoh, Y. A. and Abdulrahman, L. 2020. “A performance characteristic models of properties of dissolved plastic bottle modified bitumen for hot mix asphalt production”. Global J. Eng. Technol. Adv. 05(02): 047-056. doi: 10.30574/gjeta.
Al-Saffar, Z. H., Yaacob, H., Satar, M. K. I. M., Saleem, M. K., Jaya, P., Lai, C. J. and Shaffie, E. 2020. “Evaluating the chemical and rheological attributes of aged asphalt: Synergistic effects of maltene and waste engine oil rejuvenators”. Arab. J. Sci. Eng., 45(10): 8685-8697. doi: 10.1007/s13369-020-04842-7.
Al-Saffar, Z. H., Yaacob, H., Satar, M. K. I. M., Kamarudin, S. N. N., Mahmud, M. Z. H., Ismail, C. R., Hassan, S. A. and Mashros, N. 2021. “A review on the usage of waste engine oil with aged asphalt as a rejuvenating agent”. Mater. Today: Proc., 42: 2374-2380.
Al-Saffar, Z. H., Yaacob, H., Al Jawahery, M. S., Yousif, S. T., Satar, M. K. I. M., Jaya, R. P., Radeef, H. R., Eltwati, A. S. and Shaffie, E. 2023. “Extraction and characterisation of maltene from virgin asphalt as a potential rejuvenating agent”. Sustainability, 15(2): 909. doi: 10.3390/su15020909.
Anon. 2012. “Bitumen and bituminous binders, accelerated long-term ageing conditioning by a pressure ageing vessel (PAV)”. Anon. n. d. NII-Electronic Library Service.
Arámbula-Mercado, E., Kaseer, F., Martin, A. E., Yin, F. and Cucalon, L. G. 2018. “Evaluation of recycling agent dosage selection and incorporation methods for asphalt mixtures with high RAP and RAS contents”. Constr. Build. Mater., 158: 432-442. doi: 10.1016/j.conbuildmat.2017.10.024.
ASTM D1754. 2009. “Standard test method for effects of heat and air on asphaltic materials (Thin‐film oven test)”. Annual Book of ASTM Standards 09 (Reapproved): 1-7. doi: 10.1520/D1754.
Bardella, N., Facchin, M., Fabris, E., Baldan, M. and Beghetto, V. 2024. “Waste cooking oil as eco-friendly rejuvenator for reclaimed asphalt pavement”. Mater., 17(7): 1477. doi: 10.3390/ma17071477.
Behnood, A. and Modiri Gharehveran, M. 2019. “Morphology, rheology, and physical properties of polymer-modified asphalt binders”. Eur. Polym. J., 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049.
Bonemazzi, F. and Giavarini, C. 1999. “Shifting the bitumen structure from sol to gel”. J. Petrol. Sci. Eng., 22(1-3): 17-24. doi: 10.1016/S0920-4105(98)00052-7.
Burke, K. and Hesp, S. A. M. 2011. “Penetration testing of waste engine oil modified asphalt cements”. First Conference of Transportation Research Group of India, Bangalore, India.
Chen, M., Leng, B., Wu, S. and Sang, Y. 2014. “Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders”. Constr. Build. Mater., 66: 286-298. doi: 10.1016/j.conbuildmat.2014.05. 033.
Chung, T. Y., Eiserich, J. P. and Shibamoto, T. 1993. “Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 degree C”. J. Agric. Food Chem., 41(9): 1467-1470. doi: 10.1021/jf00033a022.
Dedene, C. D. 2011. “Investigation of using waste engine oil blended with reclaimed asphalt materials to improve pavement recyclability. Master of Science Thesis, Civil Engineering, Michigan Technological University”.
Devulapalli, L., Kothandaraman, S. and Sarang, G. 2020. “Microstructural characterisation of reclaimed asphalt pavement with rejuvenators”. Int. J. Pavement Eng., 23(4): 1038-1049. doi: 10.1080/10298436.2020.17 88027.
EAPA. 2018. “Recommendations for the use of rejuvenators in hot and warm asphalt production”. European Asphalt Pavement Association.
Erickson, M. D. 2007. Deep Frying Chemistry, Nutrition, and Practical Applications. Academic Press and AOCS Press; 2nd edition, 464 p.
Firoozifar, S. H., Foroutan, S. and Foroutan, S. 2011. “The effect of asphaltene on thermal properties of bitumen.” Chem. Eng. Res. Des., 89(10): 2044-2048. doi: 10.1016/j.cherd.201 1.01.025
Ghasemi, M. and Marandi, S. M. 2013. “Laboratory studies of the effect of recycled glass powder additive on the properties of polymer modified asphalt binders”. Int. J. Eng., Trans. A: Basics, 26(10): 1183-1190. doi: 10.5829/idosi.ije.2013.26.10a.08
Gökalp, İ. and Uz, V. E. 2019. “Utilizing of waste vegetable cooking oil in bitumen: Zero tolerance aging approach”. Constr. Build. Mater., 227: 116695. doi: 10.1016/j.conbuild mat.2019.116695.
Hu, Z., Wei, Z., Zhao, X., Zhang, M., Zhang, J., Pei, J., Wang, Q. and Lyu, L. 2024. “Foamed waste oil-activated rubberized asphalt binder: A sustainable recycling approach for improving foaming effect and performance”. Constr. Build. Mater., 423: 135889. doi: 10.1016/j.conbuildmat.2024.135889.
Hung, A. M. and Fini, E. H. 2019. “Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes”. Fuel, 242: 408-415. doi: 10.1016/j.fuel.2019.01.085.
Jia, X., Huang, B., Bowers, B. F. and Zhao, S. 2014. “Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues”. Constr. Build. Mater., 50: 683-691. doi: 10.1016/j.conbuildmat.2013.10. 012.
Jing, R., Varveri, A., Liu, X., Scarpas, A. and Erkens, S. 2021. “Ageing effect on chemo-mechanics of bitumen”. Road Mater. Pavement Des. 22(5): 1044-1059. doi: 10.1080/1468062 9.2019.1661275.
Kaseer, F., Yin, F. Arámbula-Mercado, E. and Martin, A. E. 2017. “Stiffness characterization of asphalt mixtures with high recycled material content and recycling agents”. Transport. Res. Record, 2633(1): 58-68. doi: 10.3141/2633-08.
Lesueur, D. 2009. “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification”. Adv. Colloid Interface Sci., 145(1-2): 42-82. doi: 10.1016/j.cis.2008.08.011.
Li, H., Dong, B., Wang, W., Zhao, G., Guo, P. and Ma, Q. 2019. “Effect of waste engine oil and waste cooking oil on performance improvement of aged asphalt”. Appl. Sci. (Switzerland), 9(9). doi: 10.3390/app9091767.
Li, H., Zhang, F., Feng, Z. Li, W. and Zou, X. 2021. “Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture”. Constr. Build. Mater., 276: 122138. doi: 10.1016/j.conbuildmat.2020.1221 38.
Liu, S., Peng, A., Zhou, S., Wu, J., Xuan, W. and Liu, W. 2019. “Evaluation of the ageing behaviour of waste engine oil-modified asphalt binders”. Constr. Build. Mater., 223: 394-408. doi: 10.1016/j.conbuildmat.2019.07.020.
Liu, F., Zhou, Z., Zhang, X. and Wang, Y. 2021. “On the linking of the rheological properties of asphalt binders exposed to oven aging and PAV aging”. Int. J. Pavement Eng., 22(3): 331-340. doi: 10.1080/10298436.2019.1608992.
Lu, H. T., Li, X. and Yuen, K. F. 2023. “Digital transformation as an enabler of sustainability innovation and performance – information processing and innovation ambidexterity perspectives”. Technol. Forecasting Soc. Change, 196: 122860. doi: 10.1016/j.techfor e.2023.122860.
Lv, Q., Huang, W., Zheng, M., Hu, Y., Yan, C. and Wang, J. 2022. “Understanding the particle effects and interaction effects of crumb rubber modified asphalt regarding bonding properties.” Constr. Build. Mater., 348. doi: 10.1016/j.conbuildmat.2022.128716.
Mangiafico, S., Di Benedetto, H., Olard, C. S. F., Pouget, S. and Planque, L. 2016. “Effect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing reclaimed asphalt pavement”. Mater. Des., 111: 126-139. doi: 10.1016/j.mat des.2016.07.124.
Matolia, S., Guduru, G., Gottumukkala B. and Kuna, K. K. 2020. “An investigation into the influence of aging and rejuvenation on surface free energy components and chemical composition of bitumen”. Constr. Build. Mater., 245: 118378. doi: 10.1016/j.conbuil dmat.2020.118378.
Mogawer, W. S., Fini, E. H., Austerman, A. J., Booshehrian, A. and Zada, B. 2016. “Performance characteristics of high reclaimed asphalt pavement containing bio-modifier”. Road Mater. Pavement Des., 17(3): 753-767. doi: 10.1080/14680629.2015.1096820.
Nadkarni, R. A. 2000. “Guide to ASTM test methods for the analysis of petroleum products and lubricants”. ASTM.
Negulescu, I., Mohammad, L., Daly, W., Abadie, C., Cueto, R., Daranga, C. and Glover, I. 2006. “Chemical and rheological characterization of wet and dry aging of SBS copolymer modified asphalt cements: Laboratory and field
evaluation”. Association of Asphalt Paving Technologists (AAPT). Retrieved March 2, 2022. https://trid.trb.org/view/798168.
Ongel, A. and Hugener, M. 2015. “Impact of rejuvenators on aging properties of bitumen”. Constr. Build. Mater., 94: 467-474. doi: 10.1016/j.conbuildmat.2015.07.030.
Ouyang, C., Wang, S. Zhang, Y. and Zhang, Y. 2006. “Improving the aging resistance of asphalt by addition of zinc Dialkyldithiophosphate”. Fuel, 85(7-8): 1060-1066. doi: 10.1016/j.fuel.2005.08.023.
Read, J. and Whiteoak, D. 2003. “The shell bitumen handbook”. Fifth Ed., Shell Bitumen.
Santos, F. B., Faxina, A. L. and Soares, S. de A. 2021. “Soy-based rejuvenated asphalt binders: Impact on rheological properties and chemical aging indices”. Constr. Build. Mater., 300 (August 2020). doi: 10.1016/j.conbuildmat.202 1.124220.
Sengoz, B. and Isikyakar, G. 2008. “Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen”. Constr. Build. Mater. 22(9): 1897-1905. doi: 10.1016/j.conbuildmat.2007.07.013.
Shoukat, T. and Yoo, P. J. 2018. “Rheology of asphalt binder modified with 5w30 viscosity grade waste engine oil”. Appl. Sci., (Switzerland) 8(7). doi: 10.3390/app8071194.
Singh, B. and Kumar, P. 2019. “Effect of polymer modification on the ageing properties of asphalt binders: Chemical and morphological investigation”. Constr. Build. Mater., 205: 633-641. doi: 10.1016/j.conbuildmat.2019.02.050.
Tarsi, G., Varveri, A., Lantieri, C., Scarpas, A. and Sangiorgi, C. 2018. “Effects of different aging methods on chemical and rheological properties of bitumen”. J. Mater. Civ. Eng., 30(3). doi: 10.1061/(ASCE)MT.1943.
Thyrion, F. C. 2000. “Chapter 16 asphalt oxidation”. Develop. Petrol. Sci., 40(Part B): 445-474. doi: 10.1016/S0376-7361(09)70287-0.
Wang, H., Liu, X., Apostolidis, P., van de Ven, M., Erkens, S. and Skarpas, A. 2020. “Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen”. Mater. Struct. / Mater. Constr., 53(2). doi: 10.1617/s11 527-020-1451-9.
Wang, T., Riccardi, C. and Jiang, W. 2025. “From waste to sustainable pavement: Rejuvenation of asphalt binder using waste engine oil residue and crumb rubber”. Chem. Eng. J., 505: 159523. doi: 10.1016/j.cej.2025.159523.
Werkovits, S., Bacher, M., Theiner, J., Rosenau, T. and Grothe, H. 2022. “Multi-spectroscopic characterization of bitumen and its polarity-based fractions”. Constr. Build. Mater., 352. doi: 10.1016/j.conbuildmat.2022.128992.
Wu, S., Han, J., Pang, L., Yu, M. and Wang, T. 2012. “Rheological properties for aged bitumen containing ultraviolet light resistant materials”. Constr. Build. Mater., 33: 133-138. doi: 0.1016/j.conbuildmat.2012.01.019.
Yi, T., Dong, R. and Tang, N. 2020. “Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber”. Constr. Build. Mater., 236: 117621. doi: 10.1016/j.conbuildmat.2019.117621.
Yin, F., Kaseer, F., Arámbula-Mercado, E. and Martin, A. E. 2017. “Characterising the long-term rejuvenating effectiveness of recycling agents on asphalt blends and mixtures with high RAP and RAS contents”. Road Mater. Pavement Des., 18: 273-292. doi: 10.1080/146 80629.2017.1389074.
Zaumanis, M., Mallick, R. and Frank, R. 2013. “Evaluation of rejuvenator’s effectiveness with conventional mix testing for 100% reclaimed asphalt pavement mixtures”. Transport. Res. Record, 2370: 17-25. doi: 10.3141/2370-03.
Zaumanis, M., Mallick, R. B. and Frank, R. 2015. “Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt”. Mater. Struct. / Mater. Constr., 48(8): 2475-2488. doi: 10.1617/s11527-014-0332-5.
Zhang, Y., Zhou, C., Zou, P., Hu, M. and Cao, P. 2024. “A novel WCO-MDI reactive rejuvenation method for aged SBS modified asphalt toward sustainable asphalt pavements”. J. Clean. Prod., 434: 140199. doi: 10.1016/j.jc lepro.2023.140199.
Zhao, K., Wang, Y. and Li, F. 2021. “Influence of ageing conditions on the chemical property changes of asphalt binders”. Road Mater. Pavement Des., 22(3): 653-681. doi: 10.1080/14680629.2019.1637771. | ||
آمار تعداد مشاهده مقاله: 385 تعداد دریافت فایل اصل مقاله: 17 |