
تعداد نشریات | 21 |
تعداد شمارهها | 628 |
تعداد مقالات | 9,179 |
تعداد مشاهده مقاله | 67,528,527 |
تعداد دریافت فایل اصل مقاله | 8,063,218 |
Structural, Surface Morphological, and Optical Properties of Pulsed Laser Deposited MoS2/ZnO Microrods for Optoelectronic Applications | ||
Progress in Physics of Applied Materials | ||
دوره 5، شماره 1 - شماره پیاپی 8، مرداد 2025، صفحه 67-73 اصل مقاله (1.21 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.35870.1121 | ||
نویسندگان | ||
Ahmad Kamalianfar* 1؛ Mahmoud Naseri2 | ||
1Department of Physics, Farhangian University, Tehran 1998963341, Iran. | ||
2Department of Physics, Faculty of Science, Malayer University, Malayer, Iran | ||
تاریخ دریافت: 05 آذر 1403، تاریخ بازنگری: 24 دی 1403، تاریخ پذیرش: 24 دی 1403 | ||
چکیده | ||
In the present work, hexagonal MoS2/ZnO thin film was synthesized via pulsed laser deposition method. We studied the structural and optical properties of MoS2/ZnO thin film deposited on Si (100) substrate at room temperature using a Nd:YAG laser (248 nm, 10 ns pulse duration and 10 Hz repetition rate). FESEM images demonstrated a flower-like topography of MoS2/ZnO with the well-defined hexagonal microrods and flat top surface. The band gap was determined from the analysis of UV-Visible spectrum and found to be 2.90 eV for MoS2/ZnO microrods and 3.12 eV for pure ZnO. The hexagonal wurtzite crystal structure of MoS2/ZnO composite thin film was confirmed by XRD pattern. Raman spectrum of MoS2/ZnO microrods showed two characteristics peaks at 379 and 403 corresponding to and modes, respectively. Enhancement of the near-band-edge ultraviolet emission was achieved by deposition of MoS2 on the surface of ZnO microrods. The Ossila four-point probe device measured the DC electrical conductivity. The results indicate that MoS2/ZnO microrods are regarded as promising prospects for the future of optoelectronic applications. | ||
کلیدواژهها | ||
Optoelectronic؛ MoS2؛ PLD Method؛ NMoS2/ZnO Composite | ||
مراجع | ||
[1] Li, L., Xu, Y., Peng, Y., Fan, J., Zhang, H., Jin, L., Zou, Y. and Ma, X., 2024. Structural and optical properties of position-controlled n-ZnO nanowire arrays: Potential applications in optoelectronics. Journal of Luminescence, 268, p.120399.
[2] Kamalianfar, A., Naseri, M., Abdala, A.A. and Jahromi, S.P., 2021. Hierarchical sphere-like ZnO–CuO grown in a controlled boundary layer for high-performance H2S sensing. Journal of Electronic Materials, 50(9), pp.5168-5176.
[3] Huang, W.L., Chu, S.Y. and Kao, P.C., 2022. Investigation of improving organic light-emitting diodes efficiency using an ultra-thin ultraviolet-ozone-treated Nb-doped ZnO film as anode buffer layer. Journal of Alloys and Compounds, 921, p.166033.
[4] Kamalianfar, A., Naseri, M.G. and Jahromi, S.P., 2019. Preparation and gas-sensing performances of Cr2O3-decorated ZnO nanostructures grown in a boundary layer of non-uniform thickness for low-working temperature H2S detection. Chemical Physics Letters, 732, p.136648.
[5] Gudla, U.R., Suryanarayana, B., Raghavendra, V., Emmanuel, K.A., Murali, N., Taddesse, P., Parajuli, D., Naidu, K.C.B., Ramakrishna, Y. and Chandramouli, K., 2020. Optical and luminescence properties of pure, iron-doped, and glucose capped ZnO nanoparticles. Results in Physics, 19, p.103508.
[6] Elkamel, I.B., Hamdaoui, N., Mezni, A., Ajjel, R. and Beji, L., 2023. Effects of plasmon resonance on the low frequency noise and optoelectronic properties of Au/Cu codoped ZnO based photodetectors. Optical and Quantum Electronics, 55(2), p.148.
[7] Anandan, M., Dinesh, S., Christopher, B., Krishnakumar, N., Krishnamurthy, B. and Ayyar, M., 2024. Multifaceted investigations of co-precipitated Ni-doped ZnO nanoparticles: Systematic study on structural integrity, optical interplay and photocatalytic performances. Physica B: Condensed Matter, 674, p.415597.
[8] Kamalianfar, A. and Naseri, M.G., 2019. Effect of boundary layer thickness on ammonia gas sensing of Cr2O3-decorated ZnO multipods. Applied Physics A, 125(5), p.370.
[9] Ansari, N., Mohebbi, E. and Nazari, E., 2023. The role of the defect in photonic crystals based on WS2 or WSe2 monolayers: a vision on how to achieve high quality factor and wavelength adjustability in defect modes. Optical and Quantum Electronics, 55(4), p.319.
[10] Alzaid, M., Hadia, N.M.A., Shaaban, E.R., El-Hagary, M. and Mohamed, W.S., 2022. Thickness controlling bandgap energy, refractive index and electrical conduction mechanism of 2D Tungsten Diselenide (WSe2) thin films for photovoltaic applications. Applied Physics A, 128, pp.1-12.
[11] Arora, A., Sharma, K. and Tripathi, S.K., 2023. Influence of precursors on hydrothermal synthesis and electronic properties of molybdenum diselenide. Applied Physics A, 129(9), p.654.
[12] Tyagi, P. and Choudhary, S., 2023. Uniaxial strain engineered MoS2 (molybdenite) and chlorine adsorbed MoS2 nanostructures for tuning their electronic and optical properties. Optical and Quantum Electronics, 55(8), p.748.
[13] Liu, L., Ikram, M., Ma, L., Zhang, X., Lv, H., Ullah, M., Khan, M., Yu, H. and Shi, K., 2020. Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. Journal of Hazardous Materials, 393, p.122325.
[14] Krishnan, U., Kaur, M., Kaur, G., Singh, K., Dogra, A.R., Kumar, M. and Kumar, A., 2019. MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Materials Research Bulletin, 111, pp.212-221.
[15] Tang, C.M., Zhang, H.Y. and Zhang, J., 2020. Study on photocatalytic activity of MoS2/ZnO composite in visible light. Optoelectronics Letters, 16, pp.446-450.
[16] Liu, H.Q., Yao, C.B., Jiang, C.H. and Wang, X., 2021. Preparation, modification and nonlinear optical properties of semiconducting MoS2 and MoS2/ZnO composite film. Optics & Laser Technology, 138, p.106905.
[17] Aliannezhadi, M., Mirsanai, S.Z., Jamali, M. and Tehrani, F.S., 2024. Optical and structural properties of bare MoO3 nanobelt, ZnO nanoflakes, and MoO3/ZnO nanocomposites: The effect of hydrothermal reaction times and molar ratios. Optical Materials, 147, p.114619.
[18] Doiphode, V., Shinde, P., Punde, A., Shah, S., Kale, D., Hase, Y., Ladhane, S., Rahane, S., Waghmare, A., Bade, B. and Rondiya, S., 2024. Solution-processed synthesis of ZnO/CdS heterostructure photoanode for efficient photoelectrochemical water splitting. Journal of Power Sources, 609, p.234712.
[19] Zhao, Y., Xu, B., Tong, L. and Zhang, J., 2022. The helicity of Raman scattered light: principles and applications in two-dimensional materials. Science China Chemistry, 65(2), pp.269-283.
[20] Liu, H.Q., Yao, C.B., Jiang, C.H. and Wang, X., 2021. Preparation, modification and nonlinear optical properties of semiconducting MoS2 and MoS2/ZnO composite film. Optics & Laser Technology, 138, p.106905.
[21] Tkachenko, D., Kochnev, N., Bobrysheva, N., Osmolowsky, M., Voznesenskiy, M. and Osmolovskaya, O., 2023. Influence of doping with Co, Cu and Ni on the morphological and structural parameters and functional properties of ZnO nanoobjects. Materials Chemistry and Physics, 308, p.128307.
[22] Benavente, E., Durán, F., Sotomayor-Torres, C. and González, G., 2018. Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity. Journal of Physics and Chemistry of Solids, 113, pp.119-124.
[23] Wang, S., Ren, C., Tian, H., Yu, J. and Sun, M., 2018. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Physical Chemistry Chemical Physics, 20(19), pp.13394-13399.
[24] Al-Shemri, M.I., Aliannezhadi, M., Ghaleb, R.A. and Al-Awady, M.J., 2024. Au-H2Ti3O7 nanotubes for non-invasive anticancer treatment by simultaneous photothermal and photodynamic therapy. Scientific Reports, 14(1), p.25998.
[25] Zakaly, H.M., Issa, S.A., Saudi, H.A., Algethami, M. and Soliman, T.S., 2024. Enhancing optical and radiation shielding properties: A dive into Bi2O3-Infused glasses. Optical Materials, 152, p.115496.
[26] Bouderbala, I.Y., Guessoum, A., Rabhi, S., Bouhlassa, O. and Bouras, I.E., 2024. Optical band-diagram, Urbach energy tails associated with photoluminescence emission in defected ZnO thin films deposited by sol–gel process dip-coating: effect of precursor concentration. Applied Physics A, 130(3), p.205.
[27] Kumar, D., Singh, M.K. and Mehata, M.S., 2022. Exploration of grown cobalt-doped zinc oxide nanoparticles and photodegradation of industrial dye. Materials Research Bulletin, 150, p.111795.
[28] Lei, M.Y., Liu, C.M., Zhou, Y.G., Yan, Z.H., Han, S.B., Liu, W., Xiang, X. and Zu, X.T., 2016. Microstructure and photoluminescence of MoS2 decorated ZnO nanorods. Chinese journal of physics, 54(1), pp.51-59.
[29] Yao, C., Lin, J., Qu, Y., Jiang, K., Hu, Z., Li, L., Xu, N., Sun, J. and Wu, J., 2022. WS2-decorated ZnO nanorods and enhanced ultraviolet emission. Materials Letters, 306, p.130880.
[30] Rahimi, K., Moradi, M., Dehghan, R. and Yazdani, A., 2019. Enhancement of sunlight-induced photocatalytic activity of ZnO nanorods by few-layer MoS2 nanosheets. Materials Letters, 234, pp.134-137.
[31] Prabhu, N.S., Sharmila, K., Karunakara, N., Sayyed, M.I., Almuqrin, A.H. and Kamath, S.D., 2022. Consequences of doping Er3+ and Yb3+ ions on the thermoluminescence dosimetry performance of the BaO-ZnO-LiF-B2O3-Sm2O3 glass system. Journal of Non-Crystalline Solids, 582, p.121460.
[32] Khan, M.I., Ali, S., Alwadai, N., Irfan, M., Albalawi, H., Almuqrin, A.H., Almoneef, M.M. and Iqbal, M., 2022. Structural, electrical and optical properties of hetrostructured MoS2/ZnO thin films for potential perovskite solar cells application. Journal of Materials Research and Technology, 20, pp.1616-1623.
| ||
آمار تعداد مشاهده مقاله: 49 تعداد دریافت فایل اصل مقاله: 41 |