
تعداد نشریات | 21 |
تعداد شمارهها | 623 |
تعداد مقالات | 9,160 |
تعداد مشاهده مقاله | 67,493,062 |
تعداد دریافت فایل اصل مقاله | 8,022,062 |
کنترل غیر خطی عصبی فازی هگزاروتور | ||
مدل سازی در مهندسی | ||
دوره 23، شماره ویژه 81، تیر 1404، صفحه 123-137 اصل مقاله (1.42 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.32487.2571 | ||
نویسندگان | ||
اشکان ولیپور زنگ آباد؛ هادی محمدیان* ؛ جعفر کیقبادی | ||
دانشکده مهندسی مکانیک، دانشگاه تبریز، آذربایجان شرقی، ایران | ||
تاریخ دریافت: 09 آذر 1402، تاریخ بازنگری: 02 مهر 1403، تاریخ پذیرش: 11 مهر 1403 | ||
چکیده | ||
کنترل مد لغزشی نسبت به سایر روشهای کنترل و رؤیتگر در برخورد با سیستمهای غیرخطی، مزایای زیادی از جمله پایداری دارند. با این حال، چالشهای کنترلی از جمله عدم قطعیتها در چنین رویکردهایی میتواند عملکرد کلی سیستم را کاهش دهد. در این مقاله روشهای جدیدی برای مقابله با این موضوع با استفاده از کنترل عصبی فازی پیشنهاد شده است. این مطالعه توسعه الگوریتمهای کنترل غیرخطی جدید را برای غلبه بر چالشهای کنترلی که با سیستمهای غیرخطی در حضور عدم قطعیت مواجه میشوند، ارائه میکند. هگزاکوپترها نمونه خوبی از سیستمهای تحریک ناقص هستند. کنترل مد لغزشی عملکرد پایدارتری نسبت به کنترلگرهای دیگر در حضور اغتشاشات و عدم قطعیتها از خود نشان میدهد. در حالی که با افزایش عدم قطعیت عملکرد کنترلگر کاهش مییابد، برای جبران این موضوع از شبکه عصبی فازی تطبیقی جهت یافتن ضرایب کنترلی کنترلگر مد لغزشی استفاده شده و عملکرد سیستم در حضور عدم قطعیت و دقت سیستم در مسیریابی هدف افزایش یافته است. | ||
کلیدواژهها | ||
کنترل کننده غیرخطی؛ شبکه عصبی؛ عصبی فازی؛ انفیس؛ هگزاکوپتر؛ پهپاد | ||
عنوان مقاله [English] | ||
Hexarotor Neuro Fuzzy Nonlinear Control | ||
نویسندگان [English] | ||
Ashkan Valipour Zang Abad؛ Hadi Mohammadian؛ Jafar Keighobadi | ||
Faculty of Mechanical Engineering, University of Tabriz, East Azerbaijan, Iran | ||
چکیده [English] | ||
Sliding mode control offers several advantages over other control and observer methods when dealing with nonlinear systems, particularly in terms of stability. However, control challenges, such as uncertainties, can impact the overall system performance. In this study, new approaches have been proposed to address these issues by utilizing fuzzy neural control. This article introduces novel nonlinear control algorithms to tackle control challenges that arise with nonlinear systems in the presence of uncertainty.Hex rotors serve as excellent examples of underactuated systems, where sliding mode control demonstrates a more stable performance compared to other controllers in the presence of disturbances and uncertainties. Nonetheless, as uncertainties increase, the controller's performance diminishes. To mitigate this, an adaptive fuzzy neural network is employed to determine the control coefficients for the sliding mode controller, thus improving the system's performance in the presence of uncertainty and enhancing the system's accuracy in target tracking.This research contributes to the field of nonlinear control, offering innovative solutions to the challenges posed by uncertainty in the context of nonlinear systems, with Hex rotors serving as a compelling case study. | ||
کلیدواژهها [English] | ||
Nonlinear control, Neural network, Neuro-Fuzzy, ANFIS, UAV, Hexacopter | ||
مراجع | ||
[1] S. Darvishpoor, J. Roshanian, A. Raissi, and M. Hassanalian. "Configurations, flight mechanisms, and applications of unmanned aerial systems: A review." Progress in Aerospace Sciences 121 (2020): 100694. [2] X. He, D. Guo, and K.K. Leang. "Repetitive control design and implementation for periodic motion tracking in aerial robots." In: 2017 American Control Conference (ACC); 2017 May; Seattle, WA, USA. IEEE; (2017): 5101–5108. [3] B. Xiao, Q. Hu, and Y. Zhang. "Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation." IEEE Transactions on Control Systems Technology 20, no. 6 (2011): 1605–1612. [4] H. Liu, Y. Bai, G. Lu, and Y. Zhong. "Robust attitude control of uncertain quadrotors." IET Control Theory & Applications 7, no. 11 (2013): 1583–1589. [5] A. Honglei, L. Jie, W. Jian, W. Jianwen, and M. Hongxu. "Backstepping-based inverse optimal attitude control of quadrotor." International Journal of Advanced Robotic Systems 10, no. 5 (2013): 223. [6] F. Yacef, O. Bouhali, and M. Hamerlain. "Adaptive fuzzy backstepping control for trajectory tracking of unmanned aerial quadrotor." In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS); 2014 May; Orlando, FL, USA. IEEE; (2014): 920–927. [7] S.A. Agha, Z. Mohamed, and M.H. Shaheed. "Optimised Sliding Mode Control of a Hexacopter: Simulation and Experiments." Electronics 11, no. 16 (2022): 2519. [8] Z.S. Chen, Y. Yang, X.J. Wang, K.S. Chin, and K.L. Tsui. "Fostering linguistic decision making under uncertainty: a proportional interval type-2 hesitant fuzzy TOPSIS approach." International Journal of Intelligent Robotics and Applications 500 (2019): 229–258. [9] S. Bansal, A.K. Akametalu, F.J. Jiang, F. Laine, and C.J. Tomlin. "Learning quadrotor dynamics using neural network for flight control." In: 2016 IEEE 55th Conference on Decision and Control (CDC); 2016 Dec; Las Vegas, NV, USA. IEEE; (2016): 4653–4660. [10] R. Baránek and F. Šolc. "Modelling and control of a hexa-copter." In: Proceedings of the 13th International Carpathian Control Conference (ICCC); 2012 May; Szilvásvárad, Hungary. IEEE; (2012): 19–23. [11] M. MOUSSID, A. SAYOUTI, and H. MEDROMI. "Dynamic modeling and control of a hexarotor using linear and nonlinear methods." International Journal of Applied Information Systems 9, no. 5 (2015): 9–17. [12] A. ALAIMO, V. ARTALE, C. MILAZZO, A. RICCIARDELLO, and L. TREFILETTI. "Mathematical modeling and control of a hexacopter." In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS); 2013 May; Atlanta, GA, USA. IEEE; (2013): 1043–1050. [13] J. Kim, M.S. Kang, and S. Park. "Accurate modeling and robust hovering control for a quad-rotor VTOL aircraft." In: Selected papers from the 2nd International Symposium on UAVs; 2009 Jun; Reno, NV, USA. Springer Netherlands; (2010): 9–26. [14] T. Bresciani. Modelling, identification and control of a quadrotor helicopter. MSc thesis; (2008). [15] J. Zhang, D. Gu, C. Deng, and B. Wen. "Robust and adaptive backstepping control for hexacopter UAVs." IEEE Access 7 (2019): 163502–163514. [16] A. Shafiei. "Modeling and system identification of quadrotor." Shahab Danesh Higher Education Institute; (2016). (in Persian) [17] K.V. Rao and A.T. Mathew. "Dynamic modeling and control of a hexacopter using PID and backstepping controllers." In: 2018 International Conference on Power, Signals, Control and Computation (EPSCICON); 2018 Jan; Pune, India. IEEE; (2018): 1–7. [18] R. Usubamatov. "Mathematical model for gyroscope effects." In: AIP Conference Proceedings; 2015 May; Melville, NY, USA. AIP Publishing; (2015): 1660. [19] L. Besnard, Y.B. Shtessel, and B. Landrum. "Control of a quadrotor vehicle using sliding mode disturbance observer." In: 2007 American Control Conference; 2007 Jul; New York, NY, USA. IEEE; (2007): 5230–5235. [20] A. alaimo, V. Artale, C. Milazzo, and A. Ricciardello. "PID controller applied to hexacopter flight." Journal of Intelligent & Robotic Systems 73 (2014): 261–270. [21] O. Gherouat, D. Matouk, A. Hassam, and F. Abdessemed. "Sliding mode control for a quadrotor unmanned aerial vehicle." Journal of Automation & System Engineering 10, no. 3 (2007): 150–157. [22] X. Shi, Y. Cheng, C. Yin, S. Zhong, X. Huang, K. Chen, and G. Qiu. "Adaptive fractional-order SMC controller design for unmanned quadrotor helicopter under actuator fault and disturbances." IEEE Access 8 (2020): 103792–103802. [23] V.G. Adir, A.M. Stoica, and J.F. Whidborne. "Sliding mode control of a 4Y octorotor." UPB Sci. Bull., Series D 74, no. 4 (2012): 37–51. [24] J.S. Jang. "ANFIS: adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics 23 (1993): 665–685. [25] S. Rezazadeh, M.A. Ardestani, and P.S. Sadeghi. "Optimal attitude control of a quadrotor UAV using Adaptive Neuro-Fuzzy Inference System." In: 2013 IEEE International Conference on Fuzzy Systems; 2013 Jul; Hyderabad, India. IEEE; (2013): 1–6. [26] S.K. Sheikh and M.G. Unde. "Short term load forecasting using ANN technique." International Journal of Engineering Sciences & Emerging Technologies 1, no. 2 (2012): 97–107. | ||
آمار تعداد مشاهده مقاله: 17 تعداد دریافت فایل اصل مقاله: 4 |