تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,760,676 |
تعداد دریافت فایل اصل مقاله | 7,325,474 |
بررسی انتقالحرارت هدایت غیرفوریهای در شن با استفاده از مدلهای بر پایه حساب کسری | ||
مدل سازی در مهندسی | ||
مقاله 2، دوره 15، شماره 48، خرداد 1396، صفحه 15-22 اصل مقاله (800.98 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2017.2431 | ||
نویسندگان | ||
عزیز عظیمی* ؛ شهاب غلامی؛ حسن بیاتی | ||
دانشگاه شهید چمران اهواز | ||
تاریخ دریافت: 18 اردیبهشت 1393، تاریخ بازنگری: 27 آبان 1393، تاریخ پذیرش: 19 آذر 1393 | ||
چکیده | ||
در این مقاله، به بررسی هدایت حرارتی غیرفوریه در شن ریختهگری پرداخته شدهاست که درون یک جعبه قرار داشته و ناگهان تحت یک شارگرمایی لحظهای قرار میگیرد. با توجه به ناکارآمدی مدل فوریه در مدل کردن رفتار این مسئله به سبب وجود اختلاف انتقالحرارت بین فازهای شن و توانایی مدلهای بر پایه حساب کسری در مدل کردن رفتارهای غیرعادی در مواد مختلف، در این مقاله از مدلهای بر پایه حساب کسری استفاده شده که به تازگی وارد حوزه فیزیک شدهاند. خواص ترموفیزیکی، شرایط مرزی و اولیه مسئله معلوم است. مسئله در یک الگوریتم سعی و خطا به منظور بدست آوردن مقادیر تاخیر زمانی و مرتبه کسری با استفاده از یک روش ضمنی گسستهسازی و حل شدهاست. نتایج نشان میدهند که مدل کسری استفاده شده برای شرایط فراپخشی و فروپخشی هیچ کدام به تنهایی قادر به مدل کردن انتقالحرارت در شن نیستند. همچنین میتوان مشاهده نمود که در لحظات اولیه شرایط فروپخشی و در لحظات بعدی شرایط فراپخشی حاکم بر مسئله میباشد. با بکارگیری همزمان مدلهای فروپخشی و فراپخشی، نتایچ عددی حاضر توانستهاند دادههای تجربی مربوط به توزیع دما درون جعبه را همپوشانی کنند. | ||
کلیدواژهها | ||
انتقالحرارت غیرفوریه؛ حساب کسری؛ مدلهای کسری؛ مدل فروپخشی-فراپخشی | ||
عنوان مقاله [English] | ||
Investigate on Non-Fourier Heat Conduction in Sand Using Models based on Fractional Calculus | ||
نویسندگان [English] | ||
Aziz Azimi؛ Shahab Gholami؛ Hassan Bayati | ||
چکیده [English] | ||
In this article, the study of the non-Fourier heat conduction in casting sand that is located inside a container under an instantaneous heat flux. According to inefficiencies of Fourier model to model the behavior of this problem due to differences in heat transfer between the phases and the ability of the models based on fractional calculus to model the anomalous behavior in different materials, in this paper, a model based on fractional calculus have been used. This model has recently entered the field of physics. Thermal properties, initial and boundary conditions of the problem is assumed to be known. The governing equations have been solved in a try and error algorithm to find the phase lag and fractional order using an implicit discretization method. The results show that neither the super-diffusion fractional model nor sub-diffusion fractional model can model the heat transfer in the sand. Based on the present results, it can observe also that in the initial moment, sub-diffusion conditions and after that super-diffusion conditions govern on the problem. Using simultaneously sub-diffusion and super-diffusion models, the numerical results are able to cover the experimental data for the temperature distribution within the container. | ||
کلیدواژهها [English] | ||
Non-Fourier heat transfer, Fractional calculus, Fractional models, Super diffusion-sub diffusion model | ||
مراجع | ||
[1] Wang, L., Fan, J. (2011), “Modeling Bio Heat Transport at Macro Scale”, J. Heat Transfer, Vol. 133, pp 1–10. [2] Peshkov, V. (1944), “Second Sound in Helium ІІ”, J. Phys. USSR, Vol. 8, pp. 381-389. [3] Luikov, A.V. (1965), “Application of Irrevesible Process to Investigation of Heat and Mass Transfer”, J. Eng. Phys., Vol. 9, pp. 139-152. [4] Luikov, A.V. (1966), “Application of Irrevesible Thermodynamics Methods to Investigation of Heat and Mass Transfer”, Int. J. Heat Mass Transfer, Vol. 9, pp. 287-304. [5] Kaminski, W. (1990), “Hyperbolic Heat Conduction Equation for Materials with a Non-Homogeneous Inner Structure”, ASME J. Heat Transfer, Vol. 112, pp. 555-560. [6] Mitra, K., Kumar, A., Vedavarz, A., Moallemi, M.K. (1995), “Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat”, J. Heat Transfer, Trans. ASME, Vol. 117, pp. 568-573. [7] Roetzel, W., Putra N., Das S.K. (2003), “Experiment and Analysis for Non-Fourier Conduction in Materials with Non-Homogeneous Inner Structure”, Int. J. Ther. Scien., Vol. 42, pp. 541–552. [8] Xingang, L., Yunsheng, X., Zengyuan, G. (1996), “Theoretical Analysis of Transient Heat Conduction in Sand”, Acta Mechanical Sinica, Vol. 39, pp. 855-863. [9] Antaki, P.J. (2005), “New Interpretation of Non-Fourier Heat Conduction in Processed Meat”, J. Heat Transfer, Trans. ASME, Vol. 192, pp. 406-421. [10] Agwu Nnanna, A.G., Haji-Sheikh, A., Harris, K.T. (2004), “Experimental Study of Local Thermal Non-Equilibrium Phenomena during Phase Change in Porous Media”, Int. J. Heat Mass Transfer, Vol. 47, pp. 4365-4375. [11] Agwu Nnanna, A.G., Haji-Sheikh, A., Harris, K.T. (2005), “Experimental Study of Non-Fourier Thermal Response in Porous Media”, J. Porous Media, Vol. 8, pp. 31-44. [12] Battaglia, J.L., Le Lay, L., Christophe Batsale, J., Oustaloup, A., Cois, O. (2000), “Utilisation De Modèles d Identification Non Entiers Pour Larésolution De Problèmes Inverses en Conduction”, Int. J. Therm. Sci., Vol. 39, pp.374-389. [13] Battaglia, J.L., Cois, O., Puigsegur, L., Oustaloup, A. (2001), “Solving an Inverse Heat Conduction Problem Using a Non-Integer Identified Model”, Int. J. Heat Mass Transfer, Vol. 44, pp. 2671-2680. [14] Murio, D.A. (2008), “Time fractional IHCP with Caputo Fractional Derivatives”, Comput. Math. Appl., Vol. 56, pp. 2371–2381. [15] Ghazizadeh, H.R., Azimi, A., Maerefat, M. (2012), “An Inverse Problem to Estimate Relaxation Parameter and Order of Fractionality in Fractional Single-Phase-Lag Heat Equation”, Int. J. Heat Mass Transfer, Vol. 55, pp. 2095–2101. [16] Yunsheng, X., Yingkui, G., Zengyuan, G. (1996), “Experimental Research on Transient Heat Transfer in Sand”, Acta mechanical sinica, Vol. 12, pp.39-46. [17] Lin, Y. and Xu, C. (2007), “Finite Difference/spectral Approximations for the Time-Fractional Diffusion Equation”, Journal of Computational Physics, Vol. 225: pp. 1533-1552. [18] Lynch, V. E., Carreras, B. A., del-Castillo-Negrete, D., Ferreira-Mejias, K. M. and Hicks, H. R. Numerical “Methods for the Solution of Partial Differential Equations of Fractional Order”, J. Comput. Phys., Vol. 225: pp. 1533-1552. [19] Odibat, Z.M., Shawagfeh, N.T. (2007), “Generalized Taylor's Formula”, Applied Mathematics and Computation, Vol. 186, pp. 286-293. [20] Podlubny, I. (1999), “Fractional Differential Equations”, Academic Press, New York. [21] Green, A.E., Naghdi, P.M. (1993), “Thermoelasticity without Energy Dissipation”, J. Elasticity, Vol. 31, PP. 189-208. [22] Ghazizadeh, H.R., Maerefat, M., Azimi, A., (2010), “Explicit and Implicit Finite Difference Schemes for Fractional Cattaneo Equation”, J. Comput. Phys., Vol. 229, pp. 7042–7057. ]23[ غلامی، ش.، (1392)، حل عددی معادله هدایت حرارتی غیرفوریه کسری در مواد کامپوزیت. پایاننامه کارشناسی ارشد دانشگاه شهید چمران اهواز.
| ||
آمار تعداد مشاهده مقاله: 1,024 تعداد دریافت فایل اصل مقاله: 466 |