تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,974 |
تعداد مشاهده مقاله | 66,970,072 |
تعداد دریافت فایل اصل مقاله | 7,564,505 |
Mittag-Leffler-Hyers-Ulam stability of Prabhakar fractional integral equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 3، دوره 12، شماره 2، بهمن 2021، صفحه 25-33 اصل مقاله (382.47 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20274.2140 | ||
نویسندگان | ||
Nasrin Eghbali* 1؛ Aram Moharramnia1؛ John Rassias2 | ||
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran | ||
2Pedagogical Department of Mathematics, The National and Kapodistrian University of Athens, 4, Agamemnonos Str, Aghia Paraskevi, Attikis 15342, Greece | ||
تاریخ دریافت: 06 اردیبهشت 1399، تاریخ بازنگری: 17 خرداد 1399، تاریخ پذیرش: 24 خرداد 1399 | ||
چکیده | ||
In this paper, we define and investigate Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of Prabhakar fractional integral equation. | ||
کلیدواژهها | ||
Mittag-Leffler-Hyers-Ulam stability؛ Mittag-Leffler-Hyers-Ulam-Rassias stability؛ Prabhakar fractional integral equation | ||
مراجع | ||
[1] R.P. Agarwal, A propos dune note M. Pierre Humbert, C. R. Acad. Sci. Paris 236 (1953) 2031–2032. [2] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373–380. [3] S. Eshaghi and A. Ansari, Lyapunov inequality for fractional differential equations with Prabhakar derivative, Math. Inequal. Appl. 19 (2016) 349–358. [4] S. Eshaghi and A. Ansari, Finite fractional Sturm-Liouville transform for generalized fractional derivatives, Iran. J. Sci. Technol. Trans. A Sci. 41 (2017) 931–937. [5] N. Eghbali, V. Kalvandi and J.M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math. 14 (2016) 237–246. [6] G. Farid, J. Pecaric and Z. Tomovski, Opial-type inequalities for fractional integral operator involving MittagLeffler function, Fract. Diff. Calc. 5 (2015) 93–106. [7] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput. 42(2) (2014) 576–589. [8] P. Humbert and R.P. Agarwal, Sur la function de Mittag-Leffler et quelquesunes deses generalizations, Bull. Sci. Math. (2) (77) (1953) 180–186. [9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222–224. [10] R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math. 23 (5) (2012) 9. [11] R.W. Ibrahim, Ulam stability for fractional differential equation in complex domain, Abstr. Appl. Anal. 2012 (2012) 1–8. [12] A.A. Killbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, 204 Elsevier, Amsterdam, 2006. [13] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Engrg. Syst. Appl. 2 (1996) 963–968. [14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Willey, New York, 1993. [15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diago, 1999. [16] F. Polito and Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators, Fract. Differ. Calc. 6 (2016) 73–94. [17] Th.M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300. [18] T.O. Salim and O. Faraj, A generalization of Mittag-Leffler function and integral operator associated with the fractional calculus, J. Fract. Calc. Appl. 3(5) (2012) 1–13. [19] A.K. Shukla and JC. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007) 79–81. [20] S.E. Takahashi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach-space valued differential equation y0 = λy, Bull. Korean Math. Soc. 39 (2002) 309–315. [21] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968. [22] J.R. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 63 (2011) 1–10. [23] J.R. Wang, Y. Zhou and M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Meth. Nonlinear Anal. 41 (2013) 113–133. [24] A. Wiman, Uber de fundamental satz in der theorie der funktionen, Acta Math. 29 (1905) 191–201. | ||
آمار تعداد مشاهده مقاله: 15,759 تعداد دریافت فایل اصل مقاله: 1,015 |