تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,974 |
تعداد مشاهده مقاله | 66,970,109 |
تعداد دریافت فایل اصل مقاله | 7,564,561 |
Existence of solutions for a quasilinear elliptic system with variable exponent | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 16، دوره 12، شماره 2، بهمن 2021، صفحه 205-217 اصل مقاله (415.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2019.18418.2011 | ||
نویسندگان | ||
Elhoussine Azroul؛ Farah Balaadich* | ||
University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mehraz, B.P. 1796 Atlas, Fez, Morocco | ||
تاریخ دریافت: 11 مرداد 1398، تاریخ بازنگری: 06 آبان 1398، تاریخ پذیرش: 07 آبان 1398 | ||
چکیده | ||
We consider the following quasilinear elliptic system in a Sobolev space with variable exponent: \[-\text{div}(a(|Du|)Du)=f,\] where $a$ is a $C^1$-function and $f\in W^{-1,p'(x)}(\Omega;\R^m)$. We use the theory of Young measures and weak monotonicity conditions to obtain the existence of solutions. | ||
کلیدواژهها | ||
Quasilinear elliptic systems؛ Sobolev spaces with variable exponent؛ Weak solutions؛ Young measures | ||
مراجع | ||
[1] E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. reine angew. Math. 584 (2005)117–148. [2] E. Azroul and F. Balaadich, Weak solutions for generalized p-Laplacian systems via Young measures, Moroccan J. Pure Appl. Anal. 4(2) (2018) 77–84. [3] E. Azroul and F. Balaadich, Existence of solutions for generalized p(x)-Laplacian systems, Rend. Circ. Mat. Palermo Series 2, 69 (2020) 1005—1015. [4] E. Azroul and F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl. 10(2) (2019) 255–266. [5] E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ. Mat. Palermo (2) (2020). https://doi.org/10.1007/s12215-020-00488-4 [6] E. Azroul and F. Balaadich, Existence of solutions for a class of Kirchhoff-type equation via Young measures, Numer. Funct. Anal. Optim. (2021) https://doi.org/10.1080/01630563.2021.188504. [7] F. Balaadich and E. Azroul, On a class of quasilinear elliptic systems, Acta Sci. Math. 87 (2021), https://doi.org/10.14232/actasm-020-910-z [8] F. Balaadich and E. Azroul, Elliptic systems of p-Laplacian type, Tamkang J. Math. 53 (2022). https://doi.org/10.5556/j.tkjm.53.2022.3296 [9] J. M. Ball, A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transitions, Lecture Notes Phys. 344 (1989) 207–215. [10] N. Bourbaki, Integration I (S. Berberian, Trans.), Springer-Verlag, Berlin, Heidelberg, 2004 (Chapters 1-6). [11] A. Cianchi and V. G. Maz’ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Diff. Eq. 36(1) (2010) 100–133. [12] A. Cianchi and V.G. Maz’ya, Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc. (JEMS). 16(3) (2014) 571–595. [13] E. Dibenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115(5) (1993) 1107–1134. [14] X. L. Fan and D. Zhao, On the Spaces Lp(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001) 424–446. [15] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc. Number 74, 1990. [16] X. L. Fan and D. Zhao, On the generalized Orlicz-Sobolev space Wk,p(x) (Ω), J. Gansu Educ. College 12(1) (1998) 1–6. [17] N. Hunger¨uhler, A refinement of Ball’s theorem on Young measures, New York J. Math. 3 (1997) 48–53. [18] N. Hungerb¨uhler, Quasilinear elliptic systems in divergence form with weak monotonicity, New York J. Math. 5 (1999) 83–90. [19] J. Kinuunen and S. Zhou, A local estimates for nonlinear equations with discontinuous coefficients, Commun Partial Diff. Eq. 24 (1999) 2043–2068. [20] O. Kov´a˘cik and J. R´akosn´ık, On spaces Lp(x) (Ω) and Wk,p(x) (Ω), Czechoslovak Math. J. 41(116) (1991) 592–618. [21] M. Misawa, Lq estimates of gradients for evolutional p-Laplacian systems, J. Diff. Eq. 219 (2005) 390-420. [22] K. Yosida, Functional Analysis, Springer, Berlin, 1980. [23] E. Zeidler, Nonlinear Functional Analysis and its Application, Volume I, Springer, 1986. | ||
آمار تعداد مشاهده مقاله: 15,779 تعداد دریافت فایل اصل مقاله: 722 |