تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,974 |
تعداد مشاهده مقاله | 66,970,116 |
تعداد دریافت فایل اصل مقاله | 7,564,578 |
Hyers-Ulam types stability of nonlinear summation equations with delay | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 317-326 اصل مقاله (369.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2019.18218.1995 | ||
نویسندگان | ||
Usman Riaz* ؛ Akbar Zada | ||
Department of Mathematics, University of Peshawar, 25000, Pakistan | ||
تاریخ دریافت: 17 تیر 1398، تاریخ پذیرش: 20 آبان 1398 | ||
چکیده | ||
In this typescript, we study the existence and uniqueness for a class of nonlinear summation equation with delay. Furthermore, we present Hyers–Ulam stability(HUS), generalized Hyers–Ulam stability(GHUS), Hyers–Ulam–Rassias stability(HURS) and generalized Hyers–Ulam–Rassias stability(GHURS) of the mentioned equation by utilizing discrete Gr¨onwall lemma. We finalized our manuscript through examples to help our primary outcomes. | ||
کلیدواژهها | ||
Hyers–Ulam Stability؛ Nonlinear Summation Equations؛ Summation Inequality of Gronwall type | ||
مراجع | ||
[1] R. Agarwal, Y. H. Kim and S. K. Sen, New Retarded Discrete Inequalities with Applications, Int. J. Difference Equ. 4(1) (2009) 1–19. [2] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York 1992. [3] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Diffference Equations, Kluwer Publ. Dordrecht 1997. [4] R. P. Agarval and D. O’Regan, Existence and approximation of solutions of nonlinear discrete systems on infinite intervals, Math. Meth. Appl. Sci. 22(1999) 91–99. [5] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc., Japan 2 (1950) 64–66. [6] C. T. H. Baker and Y. Song, Periodic solutions of discrete Volterra equations, IMACS 64 (2004) 521–542. [7] G. Choi and S. M. Jung, Invariance of Hyers–Ulam stability of linear differential equations and its applications, Adv. Difference Equ. 2015 (2015) 1–14. [8] M. R. Crisci, V. B. Kolmanovskii, E. Russo and A. Vecchio, Stability of continuous and discrete Volterra integrodifferential equations by Lyapunov approach, J. Integral Equ. Appl. 7(4) (1995) 393–411. [9] M. R. Crisci, Z. Jackiewicz, E. Russo and A. Vecchio, Stability analysis of discrete recurrence equations of Volterra type with degenerate Kernels, J. Math. Anal. Appl. 162 (1991) 49–62. [10] S. Elaydi and S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type, J. Differ. Equ. Appl. 2(1996) 401–410. [11] E. Fridman, Introduction to Time-Delay Systems, Analysis and Control, Birkh¨auser, 2014. [12] E. Fridman, U. Shaked and K. Liu, New conditions for delay-derivative-dependent stability, Int. J. Control 45(11) (2009) 2723–2727. [13] E. Fridman, A refined input delay approach to sampled-data control, Automatica 46(2) (2010) 421–427. [14] X. Fu and L. Zhang, Criteria on boundedness in terms of two meassures for Volterra type discrete systems, Nonlinear Anal. Theory Methods Appl. 30(5) (1997) 2673–2681. [15] J. R. Graef and E. Thandapani, Oscillatory behavior of solutions of Volterra summation equations, Appl. Math. Lett. 12 (1999) 79–84. [16] L. V. Hien and V. N. Phat, Exponential stability and stabilization of a class of uncertain linear time-delay systems, J. Franklin Inst. 46(6) (2009) 611–625. [17] J. Huang, Q. H. Alqifiary and Y. Li, Superstability of differential equations with boundary conditions, Electron. J. Diff. Equ. (2014) 1–8. [18] J. Huang, S. M. Jung and Y. Li, On Hyers–Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc. 52 (2015) 685–697. [19] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A, 27 (1941) 222–224. [20] S. M. Jung, Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004) 1135–1140. [21] V. B. Kolmanowski and A. D. Myshkis, Stability in the first approximation of some Volterra difference equations, J. Differ. Equ. Appl. 3 (1998) 565–569. [22] M. Kwapicz, On lp solutions of discrete Volterra equations, Aequationes math. University of Waterloo. 43 (1992) 191–197. [23] T. Li, A. Zada and S. Faisal, Hyers–Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl. 9(5) (2016) 2070–2075. [24] R. Medina, Solvability of discrete Volterra equations in weighted spaces, Dyn. Syst. Appl. 5 (1996) 407–422. [25] J. Morchalo, Asymptotic properties of solutions of discrete Volterra equations, Math. Slovaca. 52 (2002) 47–56. [26] J. Morchalo and A. Szmanda, Asymptotic properties of solutions of some Volterra difference equations and secondorder difference equations, Nonlinear Anal. 63 (2005) 801–811. [27] J. Morchalo, Asymptotic equvalence of Volterra differences systems, Pub. Math. 39 (1995) 301–312. [28] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993) 259–270. [29] M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk. Dydakt. Prace Mat. 14 (1997) 141–146. [30] V. Pata, Fixed point theorems and applications, Mimeo, 2008. [31] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(2) (1978) 297–300. [32] I. A. Rus, Gronwall lemmas: ten open problems, Sci. Math. Jpn. 2 (2009) 221–228. [33] R. Sipahi, S.-I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu, Stability and stabilization of systems with time delay, IEEE Control Syst. 31(1) (2011) 38–65.[34] E. Thandapani and B. S. Lalli, Asymptotic behavior and oscillations of difference equations of Volterra type, Appl. Math. Lett. 7(1994) 89–93. [35] E. Thandapani and K. Ravi, On the oscillation of Volterra summation equations, Math. Bohem. 126 (2001) 41–52. [36] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960. [37] A. Zada, S. Faisal and Y. Li, On the Hyers–Ulam stability of first order impulsive delay differential equations, J. Funct. Spac. 2016 (2016) 1–6. [38] A. Zada, S. Faisal and Y. Li, Hyers–Ulam–Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10 (2017) 504–510. [39] A. Zada, F. U. Khan, U. Riaz and T. Li, Hyers–Ulam stability of linear summation equations, Punjab Univ. J. Math. 49(1) (2017) 19–24. [40] A. Zada, U. Riaz and F. Khan, Hyers–Ulam stability of impulsive integral equations, Boll. Unione Mat. Ital. 12(3) (2019) 453–467. [41] A. Zada, O. Shah and R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comp. 271 (2015) 512–518. | ||
آمار تعداد مشاهده مقاله: 15,693 تعداد دریافت فایل اصل مقاله: 531 |