تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,762,964 |
تعداد دریافت فایل اصل مقاله | 7,326,063 |
The lowest-degree stabilizer-free weak Galerkin finite element method for Poisson equation on rectangular and triangular meshes | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 9، دوره 13، شماره 2، مهر 2022، صفحه 83-94 اصل مقاله (889.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.24411.2736 | ||
نویسندگان | ||
Allahbakhsh Yazdani Cherati* 1؛ Hamid Momeni2 | ||
1Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar Iran | ||
تاریخ دریافت: 10 شهریور 1400، تاریخ بازنگری: 05 آبان 1400، تاریخ پذیرش: 09 آبان 1400 | ||
چکیده | ||
Recently, the study on weak Galerkin (WG) methods with or without stabilizer parameters has received much attention. The WG methods are a discontinuous extension of the standard finite element methods in which classical differential operators are approximated on functions with discontinuity. A stabilizer term in the WG formulation is used to guarantee convergence and stability of the discontinuous approximations for a model problem. By removing this parameter, we can reduce the complexity of programming on this numerical method. Our goal in this paper is to introduce a new stabilizer-free WG (SFWG) method to solve the Poisson equation in which we use a new combination of WG elements. Numerical experiments indicate that our SFWG scheme is faster and more economical than the standard WG scheme. Errors and convergence rates on two types of mesh are presented for each of the considered methods, which show that our numerical scheme has $O(h^2)$ convergence rate while another method has $O(h)$ convergence rate in the energy norm and the $L^2$-norm. | ||
کلیدواژهها | ||
Stabilizer-free weak Galerkin؛ Discrete weak differential operators؛ The Poisson equation؛ Rectangular mesh؛ Lowest-degree elements | ||
مراجع | ||
[1] A. Al-Taweel and X. Wang, The lowest-order stabilizer free weak Galerkin finite element method, Appl. Numer. Math. 157 (2020), 434–445. [2] P. Castillo, B. Cockburn, I. Perugia and D. Schtzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2008,) 1676–1706. [3] A. Y. Charati, H. Momeni and M. S. Cheichan, A new P0 weak Galerkin finite element scheme for second-order problems, Comp. Appl. Math. 40 (2021), 138. [4] B. Cockburn, B. Dong, J. Guzm´an, M. Restelli, and R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Sci. Comput. 31 (2009), 3827–3846. [5] B. Cockburn, G. Kanschat and D. Schtzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comput. 73 (2004), 569–593. [6] B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), 2440–2463. [7] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly perturbed biharmonic equation, J. Sci. Comp. 82 (2020), 1–15. [8] R. Griesmaier and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comp. 49 (2011), 291–310. [9] R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal. 56 (2018), 1482–1497. [10] L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math. 285 (2015), 45–58. [11] S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet Neumann boundary conditions, J. Comput. Appl. Math. 164 (2004), 601–612. [12] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math. 42 (2016), 155–174. [13] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103–115. [14] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput. 83 (2014), 2101–2126. [15] C. Wang and J. Wang, Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems, Comput. Math. Appl. 79 (2020), 746–763. [16] X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II, J. Comput. Appl. Math. 394 (2021), 113525. [17] X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math. 371 (2020), 112699. [18] X. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model. 17 (2020), 517–531. [19] X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II, J. Comput. Appl. Math. 394 (2021), 113525. | ||
آمار تعداد مشاهده مقاله: 44,443 تعداد دریافت فایل اصل مقاله: 416 |