تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,299 |
تعداد دریافت فایل اصل مقاله | 7,051,203 |
Impact Resistance of Concrete Containing LLDPE–Waste Tire Rubber and Silica Fume | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 4، دوره 11، شماره 1 - شماره پیاپی 29، اردیبهشت 2023، صفحه 60-75 اصل مقاله (1.55 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2022.23456.1511 | ||
نویسندگان | ||
Imad A. Khalhen1؛ Reza Aghayari* 2 | ||
1Ph.D. Student, Department of Civil Engineering, Razi University, Kermanshah, Iran | ||
2Associate Professor, Department of Civil Engineering, Razi University, Kermanshah, Iran | ||
تاریخ دریافت: 29 اردیبهشت 1400، تاریخ بازنگری: 22 آذر 1400، تاریخ پذیرش: 02 اسفند 1400 | ||
چکیده | ||
Some of the desirable properties of concrete include high impact resistance and great energy-sucking capacity to name a few. These properties can be improved through the use of sustainable materials. This study investigated the effects of partly replacing fine aggregate with linear low-density polyethylene (LLDPE) and waste rubber (WR) as fine aggregates on the efficiency of concrete under impact loading. Two water to binder ratio (W/B) percentages of (0.40 and 0.55) were selected, with six (LLDPE-R) replacement grades (0%, 5%, 10%, 15%, 20%, and 30%) and two silica fume (SF) replacement grades (0% and 15%). Six cylinders with 150 and 60 mm were subjected to an impact by a 4.45 kg hammer striking. Test results indicated that impact resistance for the first visible crack and the ultimate failure increased with LLDPE-R content, where it increased by 4.76 times. This study also demonstrated that the impact resistance for the first visible crack of LLDPE-R concrete was improved by an average of 295% for specimens without SF and 292% for specimens containing SF. This enhancement for the ultimate failure is 291% and 290% for specimens without SF and containing SF, respectively. | ||
کلیدواژهها | ||
Impact resistance؛ Concrete؛ Silica fume؛ Rubber؛ Drop weight | ||
مراجع | ||
[1] Gupta T, Sharma RK, Chaudhary S. Impact resistance of concrete containing waste rubber fiber and silica fume. Int J Impact Eng 2015;83:76–87. doi:10.1016/j.ijimpeng.2015.05.002.
[2] Yu J, Yao J, Lin X, Li H, Lam JYK, Leung CKY, et al. Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cem Concr Res 2018;107:110–23. doi:10.1016/j.cemconres.2018.02.013.
[3] Elchalakani M, Hassanein MF, Karrech A, Fawzia S, Yang B, Patel VI. Experimental tests and design of rubberised concrete-filled double skin circular tubular short columns. Structures 2018;15:196–210. doi:10.1016/j.istruc.2018.07.004.
[4] Liu F, Chen G, Li L, Guo Y. Study of impact performance of rubber reinforced concrete. Constr Build Mater 2012;36:604–16. doi:10.1016/j.conbuildmat.2012.06.014.
[5] Chen Z, Li L, Xiong Z. Investigation on the interfacial behaviour between the rubber-cement matrix of the rubberized concrete. J Clean Prod 2019;209:1354–64. doi:10.1016/j.jclepro.2018.10.305.
[6] Sharbatdar MK, Abbasi M, Fakharian P. Improving the Properties of Self-compacted Concrete with Using Combined Silica Fume and Metakaolin. Period Polytech Civ Eng 2020;64:535–44. doi:10.3311/PPci.11463.
[7] Sajedi F. Effect of curing regime and temperature on the compressive strength of cement-slag mortars. Constr Build Mater 2012;36:549–56. doi:10.1016/j.conbuildmat.2012.06.036.
[8] Soltani M, Moghaddam TB, Karim MR, Baaj H. Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology. Eng Fail Anal 2015;58:238–48. doi:10.1016/j.engfailanal.2015.09.005.
[9] Li D, Toghroli A, Shariati M, Sajedi F, Bui DT, Kianmehr P, et al. Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete. Smart Struct Syst 2019;23:207–14. doi:10.12989/sss.2019.23.2.207.
[10] Farhan AH, Dawson AR, Thom NH. Effect of cementation level on performance of rubberized cement-stabilized aggregate mixtures. Mater Des 2016;97:98–107. doi:10.1016/j.matdes.2016.02.059.
[11] Sharma S, Gupta T, Sharma RK. Assessment of Mechanical Properties of Concrete Containing Granite Slurry Waste. Int J Eng 2016;29:599–605. doi:10.5829/idosi.ije.2016.29.05b.02.
[12] Mugahed Amran YH, Alyousef R, Rashid RSM, Alabduljabbar H, Hung CC. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018;16:208–38. doi:10.1016/j.istruc.2018.09.008.
[13] AL-Asadi AK. Modelling of earthquake repellent fibre reinforced concrete. Period Eng Nat Sci 2019;7:1996–2011. doi:10.21533/pen.v7i4.972.
[14] Onuaguluchi O, Panesar DK. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J Clean Prod 2014;82:125–31.
[15] Holmes N, Dunne K, O’Donnell J. Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings. Constr Build Mater 2014;55:365–78. doi:10.1016/j.conbuildmat.2014.01.046.
[16] Eldin NN, Senouci AB. Rubber-tire particles as concrete aggregate. J Mater Civ Eng 1993;5:478–96. doi:10.1061/(ASCE)0899-1561(1993)5:4(478).
[17] Murali G, Poka L, Parthiban K, Haridharan MK, Siva A. Impact Response of Novel Fibre-Reinforced Grouted Aggregate Rubberized Concrete. Arab J Sci Eng 2019;44:8451–63. doi:10.1007/s13369-019-03819-5.
[18] Ozbay E, Lachemi M, Sevim UK. Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag. Mater Struct Constr 2011;44:1297–307. doi:10.1617/s11527-010-9701-x.
[19] Al-Tayeb MM, Bakar BHA, Ismail H, Akil HM. Impact Resistance of Concrete with Partial Replacements of Sand and Cement by Waste Rubber. Polym - Plast Technol Eng 2012;51:1230–6.
[20] Khatib ZK, Bayomy FM. Rubberized Portland cement concrete. J Mater Civ Eng 1999;11:206–13. doi:10.1061/(ASCE)0899-1561(1999)11:3(206).
[21] research IT-C and concrete, 1995 undefined. The properties of rubberized concretes. Elsevier n.d.
[22] Topçu IB, Demir A. Durability of rubberized mortar and concrete. J Mater Civ Eng 2007;19:173–8. doi:10.1061/(ASCE)0899-1561(2007)19:2(173).
[23] Topçu IB, Avcular N. Collision behaviours of rubberized concrete. Cem Concr Res 1997;27:1893–8. doi:10.1016/S0008-8846(97)00204-4.
[24] Kanthe V, Deo S, Murmu M. Combine Use of Fly Ash and Rice Husk Ash in Concrete to Improve its Properties. Int J Eng 2018;31:1012–9. doi:10.5829/ije.2018.31.07a.02.
[25] Khan M, Ali M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Construction and Building Materials. 2019 Apr 10;203:174-87.
[26] Sasanipour H, Aslani F, Taherinezhad J. Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Construction and Building Materials. 2019 Dec 10;227:116598.
[27] Daneshvar K, Moradi MJ, Ahmadi K, Hajiloo H. Strengthening of corroded reinforced concrete slabs under multi-impact loading: Experimental results and numerical analysis. Construction and Building Materials. 2021 May 17;284:122650.
[28] ACI (American Concrete Institute). ACI 544.1 R-96 ACI Committee 544. State-of-the-art report on fibre reinforced concrete.
[29] Khalil E, Abd-elmohsen M, Anwar AM. Impact Resistance of Rubberized Self-Compacting Concrete. Water Sci 2015;29:45–53. doi:10.1016/j.wsj.2014.12.002.
[30] Films B. Linear Low Density Polyethylene Film (LLDPE) Properties. Blueridge Film Inc 2015.
[31] ASTM International. ASTM C494/C494M-04: Standard Specification for Chemical Admixtures for Concrete. Am Soc Test Mater 2013:15–7. doi:10.1520/C0260.
[32] ASTM Standard C33. Standard Specification for Concrete Aggregates. ASTM Int 2003;i:11. doi:10.1520/C0033.
[33] ASTM C 470. Standard Specification for Molds for Forming Concrete Test Cylinders Vertically 1. ASTM Int 2003;08:1–5. doi:10.1520/C0470.
[34] Standard AS. C496, 2011,“Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.” ASTM International, West Conshohocken, PA, 2011, DOI: 10.1520/C0496_C0496M-11. | ||
آمار تعداد مشاهده مقاله: 951 تعداد دریافت فایل اصل مقاله: 569 |