تعداد نشریات | 21 |
تعداد شمارهها | 590 |
تعداد مقالات | 8,768 |
تعداد مشاهده مقاله | 66,666,037 |
تعداد دریافت فایل اصل مقاله | 7,234,271 |
A new approach for drought forecasting using wavelet-ANN model and satellite images | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 29، دوره 15، شماره 5، مرداد 2024، صفحه 353-361 اصل مقاله (984.75 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.30598.4441 | ||
نویسندگان | ||
Maedeh Behifar1؛ Ata Abdollahi Kakroodi* 1؛ Majid Kiavarz1؛ Ghasem Azizi2 | ||
1Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran | ||
2Department of Geography, Faculty of Geography, University of Tehran, Tehran, Iran | ||
تاریخ دریافت: 30 دی 1401، تاریخ بازنگری: 19 اردیبهشت 1402، تاریخ پذیرش: 25 اردیبهشت 1402 | ||
چکیده | ||
Due to different influencing factors, drought is difficult to forecast. Hence, robust and accurate forecasting methods are needed. A method was presented to improve the accuracy of drought forecasts using the wavelet neural network and proximity information in satellite images. Satellite precipitation and evapotranspiration data were applied to calculate drought indices. And the drought intensity in different months of the following year was forecasted using the wavelet neural network method. To increase forecast accuracy and discriminate random changes from drought signals, proximity data in satellite images were used to forecast drought at the East Isfahan climate station. The results showed that the wavelet neural network method is able to forecast drought with reasonable accuracy. Also, using adjoining data may improve forecasting precision. The correlation between the target and predicted values was 0.675. | ||
کلیدواژهها | ||
Drought؛ Forecasting؛ Wavelet؛ Artificial neural network؛ Satellite image | ||
مراجع | ||
[1] M.A. Alawsi, S.L. Zubaidi, N.S.S. Al-Bdairi, N. Al-Ansari and K. Hashim, Drought forecasting: a review and assessment of the hybrid techniques and data pre-processing, Hydrology 9 (2022), no. 7, 115. [2] L. Anastasakis and N. Mort, The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH), Research Report-University of Sheffield Department of Automatic Control and Systems Engineering, 2001. [3] S.S. Band, I. Al-Shourbaji, H. Karami, S. Karimi, J. Esfandiari and A. Mosavi, Combination of group method of data handling (GMDH) and computational fluid dynamics (CFD) for prediction of velocity in channel intake, Appl. Sci. 10 (2020), no. 21, 7521. [4] J. Bazrafshan and S. Hejabi, Drought: Monitoring Methods, University of Tehran Press, 2016. [5] M. Behifar, A.A. Kakroodi, M. Kiavarz and G. Azizi, Satellite-based drought monitoring using optimal indices for diverse climates and land types, Ecolog. Inf. 76 (2023), 102143. [6] A. Belayneh, J. Adamowski, B. Khalil and B.J.J.O.H. Ozga-Zielinski, Long-term SPI drought forecasting in the Awash river basin in Ethiopia using wavelet neural network and wavelet support vector regression models, J. Hydrol. 508 (2014), 418–429. [7] D.H. Burn and N.K. Goel, The formation of groups for regional flood frequency analysis, Hydrological Sci. J. 45 (2000), no. 1, 97–112. [8] B. Cannas, A. Fanni, G. Sias, S. Tronci and M.K. Zedda, River flow forecasting using neural networks and wavelet analysis, Geophys. Res. Abstr. 7 (2005), 08651. [9] E.O. Center, TRMM Data User’s Handbook, National Space Development Agency of Japan, 2001. [10] S.D. Conte and C. De Boor, Elementary numerical analysis: an algorithmic approach, Society for Industrial and Applied Mathematics, 2017. [11] S. Djerbouai and D. Souag-Gamane, Drought forecasting using neural networks, wavelet neural networks, and stochastic models: Case of the Algerois Basin in North Algeria, Water Resources Manag. 30 (2016), 2445–2464. [12] I. Emadodin, T. Reinsch and F. Taube, Drought and desertification in Iran, Hydrology 6 (2019), no. 3, 66. [13] A. Ghiami Bajgirani, M. Sharifi, M. Maghrebi and J. Arefi, Applying Fourier and Wavelet transforms to extract instantaneous unit hydrograph, Iran-Water Resources Res. 6 (2010), no. 2, 27–35. [14] Z. Hao, V.P. Singh and Y. Xia, Seasonal drought prediction: advances, challenges, and future prospects, Rev. Geoph. 56 (2018), no. 1, 108–141. [15] H. Iba, H. DeGaris and T. Sato, A numerical approach to genetic programming for system identification, Evol. Comput. 3 (1995), no. 4, 417–452. [16] A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE Trans. Syst. Man, Cybernet. 4 (1971), 364–378. [17] H. Khedmati, M. Manshouri, M. Heydarizadeh and H. Sedghi, Zonation and estimation of flood discharge in unguaged sites located in south-east basins of Iran using a combination of flood index and multi-variable regression methods, J. Water Soil 24 (2010), no. 3, 593–609. [18] A.S. Kiem, F. Johnson, S. Westra, A. van Dijk, J.P. Evans, A. O’Donnell, A. Rouillard, C. Barr, J. Tyler, M. Thyer and D. Jakob, Natural hazards in Australia: droughts, Climatic Change 139 (2016), 37–54. [19] T.W. Kim and J.B. Valdes, Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Eng. 8 (2003), no. 6, 319–328. [20] R.J.E. Merry and M.J.G. van de Molengraft, Wavelet Theory and Applications: A Literature Study, Eindhoven University of Technology Department of Mechanical Engineering Control Systems Technology Group, 2005. [21] A.K. Mishra and V.P. Singh, Drought modeling–A review, J. Hydrol. 403 (2011), no. 1–2, 157–175. [22] V. Nourani, M. Komasi and A. Mano, A multivariate ANN-wavelet approach for rainfall–runoff modeling, Water Resources Manag. 23 (2009), no. 14, 2877–2894. [23] A. Pahlavanroy, H. Ghasemi and M. Afshari, Investigating the drought trend of Isfahan province with SIAP statistical index, Fifth Nat. Conf. Watershed Manag. Sci. Engin. Iran, Gorgan, 200). [24] W. Pozzi, J. Sheffield, R. Stefanski, D. Cripe, R. Pulwarty, J.V. Vogt, R.R. Heim, M.J. Brewer, M. Svoboda, R. Westerhoff and A.I. Van Dijk, Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting, Bull. Amer. Meteorol. Soc. 94 (2013), no. 6, 776–785. [25] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015), 85–117. [26] S. Shaghaghi, H. Bonakdari, A. Gholami, I. Ebtehaj and M. Zeinolabedini, Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design, Appl. Math. Comput. 313 (2017), 271–286. [27] W. Wei, J. Zhang, L. Zhou, B. Xie, J. Zhou and C. Li, Comparative evaluation of drought indices for monitoring drought based on remote sensing data, Environ. Sci. Pollution Res. 28 (2021), no. 16, 20408–20425. [28] D.A. Wilhite, Preparing for drought: A methodology, Drought: A Global Assessment, Vol. II, edited by Donald A. Wilhite, chap. 35, London: Routledge, 2000, pp. 89—104. [29] M. Younesi, N. Shahraki, S. Marofi, H. Nozari, Drought forecasting using artificial wavelet neural network-integrated model (WA-ANN) and time series model (ARIMA), Irrig. Sci. Eng. 41 (2018), no. 2, 167–181. [30] Y. Zhang, PML V2 Global Evapotranspiration and Gross Primary Production (2002.07-2019.08), National Tibetan Plateau Data Center, 2020. [31] A. Zhang and G. Jia, Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data, Remote Sens. Envir. 134 (2013), 12–23. | ||
آمار تعداد مشاهده مقاله: 31,843 تعداد دریافت فایل اصل مقاله: 242 |