تعداد نشریات | 21 |
تعداد شمارهها | 592 |
تعداد مقالات | 8,806 |
تعداد مشاهده مقاله | 66,751,989 |
تعداد دریافت فایل اصل مقاله | 7,318,134 |
Natural Convection and Entropy Generation of Non-Newtonian Hybrid Cu-Al2O3/Water Nanofluid in an Inclined Partial Porous Cavity with Different Local Heater Positions in the Presence of Magnetic Field | ||
Journal of Heat and Mass Transfer Research | ||
دوره 10، شماره 2 - شماره پیاپی 20، بهمن 2023، صفحه 279-300 اصل مقاله (2.12 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2023.30638.1442 | ||
نویسنده | ||
Amin Kardgar* | ||
Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran | ||
تاریخ دریافت: 24 اردیبهشت 1402، تاریخ بازنگری: 04 دی 1402، تاریخ پذیرش: 05 دی 1402 | ||
چکیده | ||
In the present paper, natural convection of non-Newtonian hybrid Cu-Al2O3 nanofluid in an inclined partial porous cavity with changing heated wall position was numerically investigated. At first, the governing equations are rewritten non-dimensionally by utilizing dimensionless parameters. Then, the entropy generation equations are expressed in non-dimensional form. The discretization of governing equations is done by CVFVM (Control Volume Finite Volume Method). The coupling between pressure and velocity is handled by SIMPLE method and the obtained algebraic equations are computed by SIP solver. Nu number and irreversibility of flow and heat transfer are examined by main parameters such as Ha number, Da number, porosity, porous media thickness, position of heated wall, power law index and angle of inclination. Nu number increases almost 39%, 50% and 52% with enhancing porous media thickness from 0.1 to 0.6 at inclination angle of -30o, 0o and 30o, respectively. The Nu number increases by setting the hot surface at the lower part of the cavity. Nu decreases almost 10.5%, 7.6% and 5.2% by augmentation of Ha number from 0.0 to 40.0 at viscosity power law index of 0.6, 1.0 and 1.4, respectively. Nu increases almost 36%, 47% and 53% at inclination angle of 30o, 0o and ‒30o by enhancing volume fraction from 0.02 to 0.12, respectively. Convection heat transfer and fluid flow will be more dominant by augmentation of permeability and Da number and this will lead to more entropy generation by fluid flow and less entropy generation and irreversibility by magnetic field and convective heat transfer process. Fluid flow and magnetic field entropy generation decrease and heat transfer irreversibility and Be number rises by porous thickness ratio. Be number and thermal entropy generation increases with porosity. However, irreversibility due to magnetic field and flow friction decreases. | ||
کلیدواژهها | ||
Hybrid Cu-Al2O3 nanofluid؛ Partially porous media؛ Position of heated wall؛ Da number؛ Porosity؛ non-Newtonian fluid | ||
مراجع | ||
[1] Cekmecelioglu, D., 2021. Convective heat transfer in food process engineering. Engineering principles of unit operations in food processing. Elsevier, pp. 315–344.
[2] Cordioli, M., Rinaldi, M. and Barbanti, D., 2016. Investigation and modelling of natural convection and conduction heat exchange: study on food systems with modified starch by means of computational fluid dynamics. International Journal of Food Science \& Technology. Wiley Online Library, 51(4), pp. 854–864.
[3] Omosebi, A. O. and Igbokoyi, A. O., 2016. Boundary effect on pressure behavior of Power-Law non-Newtonian fluids in homogeneous reservoirs. Journal of Petroleum Science and Engineering. Elsevier, 146, pp. 838–855. doi: 10.1016/j.petrol.2016.07.036.
[4] Nie, R. S. et al., 2018 Modeling the characteristics of Bingham porous-flow mechanics for a horizontal well in a heavy oil reservoir. Journal of Petroleum Science and Engineering. Elsevier B.V., 171, pp. 71–81. doi: 10.1016/j.petrol.2018.07.026.
[5] Kumar, A. and Saha, S. K., 2016. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix. Applied Thermal Engineering. Elsevier Ltd, 109, pp. 911–923. doi: 10.1016/j.applthermaleng.2016.04.161.
[6] Ouahouah, A. et al., 2021. Journal of Non-Newtonian Fluid Mechanics Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 289 (January), p. 104490. doi: 10.1016/j.jnnfm.2021.104490.
[7] Lamraoui, H., Mansouri, K. and Saci, R., 2019. Journal of Non-Newtonian Fluid Mechanics Numerical investigation on fluid dynamic and thermal behavior of a non-Newtonian Al2O3– water nanofluid flow in a confined impinging slot jet. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 265 (July 2018), pp. 11–27. doi: 10.1016/j.jnnfm.2018.12.011.
[8] Kang, J. et al., 2014. Journal of Non-Newtonian Fluid Mechanics Thermal instability of a nonhomogeneous power-law nanofluid in a porous layer with horizontal throughflow. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 213, pp. 50–56. doi: 10.1016/j.jnnfm.2014.09.006.
[9] Sheremet, M. A. and Pop, I., 2018. Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno’s models. Journal of Molecular Liquids. Elsevier B.V., 266, pp. 19–28. doi: 10.1016/j.molliq.2018.06.065.
[10] Jamaludin, A. et al., 2020. MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics, B/Fluids. Elsevier Masson SAS., 84, pp. 71–80. doi: 10.1016/j.euromechflu.2020.05.017.
[11] Alsabery, A. I. et al., 2017. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 470, pp. 20–38. doi: 10.1016/j.physa.2016.11.107.
[12] Khan, Z. H. et al., 2020. Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium’, Journal of Magnetism and Magnetic Materials. Elsevier B.V., 499, p. 166241. doi: 10.1016/j.jmmm.2019.166241.
[13] Pekmen Geridonmez, B. and Oztop, H. F., 2019. Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. International Journal of Mechanical Sciences. Elsevier Ltd, 161–162, p. 105077. doi: 10.1016/j.ijmecsci.2019.105077.
[14] Toosi, M. H. and Siavashi, M., 2017. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. Journal of Molecular Liquids. Elsevier B.V, 238, pp. 553–569. doi: 10.1016/j.molliq.2017.05.015.
[15] Rodríguez-Núñez, K., Tabilo, E. and Moraga, N. O., 2019. Conjugate unsteady natural heat convection of air and non-Newtonian fluid in thick walled cylindrical enclosure partially filled with a porous media. International Communications in Heat and Mass Transfer. Elsevier, 108, p. 104304. doi: 10.1016/j.icheatmasstransfer.2019.104304.
[16] Sheikholeslami, M. and Vajravelu, K., 2017. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Applied Mathematics and Computation, Elsevier Inc., 298, pp. 272–282. doi: 10.1016/j.amc.2016.11.025.
[17] Zhang, Y. et al., 2020. Flow and heat transfer simulation in a wall-driven porous cavity with internal heat source by multiple-relaxation time lattice Boltzmann method (MRT-LBM). Applied Thermal Engineering. Elsevier, 173(March), p. 115209. doi: 10.1016/j.applthermaleng.2020.115209.
[18] Sheremet, M. A. and Pop, I., 2015. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. European Physical Journal Plus, 130(6), pp. 1-12. doi: 10.1140/epjp/i2015-15107-4.
[19] Li, Z. et al., 2019. Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. European Physical Journal Plus, 134(1). doi: 10.1140/epjp/i2019-12406-8.
[20] Rajarathinam, M., Nithyadevi, N. and Chamkha, A. J., 2018. Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Advanced Powder Technology. The Society of Powder Technology Japan, 29(3), pp. 590–605. doi: 10.1016/j.apt.2017.11.032.
[21] Vijaybabu, T. R. and Dhinakaran, S., 2019. MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3 −H2O nanofluid: An LBM study. International Journal of Mechanical Sciences. Elsevier Ltd, 153–154, pp. 500–516. doi: 10.1016/j.ijmecsci.2019.02.003.
[22] Gibanov, N. S. et al., 2017. Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. International Journal of Heat and Mass Transfer. Elsevier Ltd, 114, pp. 1086–1097. doi:10.1016/j.ijheatmasstransfer.2017.07.001.
[23] Ellahi, R. et al., 2023. Natural convection nanofluid flow with heat transfer analysis of carbon nanotubes–water nanofluid inside a vertical truncated wavy cone. Mathematical Methods in the Applied Sciences, 46(10), pp. 11303–11321. doi: 10.1002/mma.7281.
[24] Ellahi, R., 2013. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Applied Mathematical Modelling. Elsevier Inc., 37(3), pp. 1451–1467. doi: 10.1016/j.apm.2012.04.004.
[25] Aneja, M., Chandra, A. and Sharma, S., 2020. Natural convection in a partially heated porous cavity to Casson fluid. International Communications in Heat and Mass Transfer. Elsevier, 114, p. 104555. doi: 10.1016/j.icheatmasstransfer.2020.104555.
[26] Astanina, M. S. et al., 2018. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. International Journal of Mechanical Sciences. Elsevier Ltd, 136(December 2017), pp. 493–502. doi: 10.1016/j.ijmecsci.2018.01.001.
[27] Selimefendigil, F. and Öztop, H. F., 2020b. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. International Communications in Heat and Mass Transfer, Elsevier, 113, p. 104551. doi: 10.1016/j.icheatmasstransfer.2020.104551.
[28] Khan, A. A. et al., 2023. Heat transmission in Darcy-Forchheimer flow of Sutterby nanofluid containing gyrotactic microorganisms. International Journal of Numerical Methods for Heat \& Fluid Flow. Emerald Publishing Limited, 33(1), pp. 135–152.
[29] Zeeshan, A. et al., 2023. Hydromagnetic flow of two immiscible nanofluids under the combined effects of Ohmic and viscous dissipation between two parallel moving plates. Journal of Magnetism and Magnetic Materials. Elsevier, 575, p. 170741.
[30] Kole, M. and Dey, T. K., 2010. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. Journal of Physics D: Applied Physics, 43(31). doi: 10.1088/0022-3727/43/31/315501.
[31] Yu, W. and Xie, H., 2012. A review on nanofluids: Preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012. doi: 10.1155/2012/435873.
[32] Vafai, K., 2010. Porous media: applications in biological systems and biotechnology. CRC Press.
[33] Selimefendigil, F. and Öztop, H. F., 2020a. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 540, p. 123004. doi: 10.1016/j.physa.2019.123004.
[34] Bin-Nun, U. and Manitakos, D., 2004. Low cost and high performance screen laminate regenerator matrix. Cryogenics, 44(6–8), pp. 439–444. doi:10.1016/j.cryogenics.2004.03.015.
[35] Kefayati, G. R., 2016 Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure, International Journal of Heat and Mass Transfer. Elsevier Ltd, 92, pp. 1066–1089. doi: 10.1016/j.ijheatmasstransfer.2015.09.078.
[36] Zhang, S., Zhao, X. and Bayyuk, S., 2014. Generalized formulations for the rhie-chow interpolation. Journal of Computational Physics. Elsevier Inc., 258, pp. 880–914. doi: 10.1016/j.jcp.2013.11.006.
[37] Kardgar, A. and Jafarian, A., 2016. Numerical investigation of oscillating conjugate heat transfer in pulse tubes. Applied Thermal Engineering. Elsevier Ltd, 105, pp. 557–565. doi:10.1016/j.applthermaleng.2016.03.045.
[38] Ferziger, J. H., Peric, M. and Leonard, A., 2020. Computational Methods for Fluid Dynamics, springer. doi: 10.1063/1.881751.
[39] Kardgar, A. and Jafarian, A., 2020. Numerical simulation of turbulent oscillating flow in porous media. Scientia Iranica. doi:10.24200/SCI.2020.52521.2788.
[40] Khanafer, K., Vafai, K. and Lightstone, M., 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19), pp. 3639–3653. doi: 10.1016/S0017-9310(03)00156-X.
[41] Krane, R. and Jessee, J., 1983. Some Detailed Field Measurement for a Natural Convection Flow in a Vertical Square Enclosure. in Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, pp. 323–329. | ||
آمار تعداد مشاهده مقاله: 267 تعداد دریافت فایل اصل مقاله: 186 |