تعداد نشریات | 21 |
تعداد شمارهها | 592 |
تعداد مقالات | 8,806 |
تعداد مشاهده مقاله | 66,751,988 |
تعداد دریافت فایل اصل مقاله | 7,318,133 |
Thermal Performance of Convective-Radiative Transfer Longitudinal Moving Rod with Variable Thermal Conductivity | ||
Journal of Heat and Mass Transfer Research | ||
دوره 10، شماره 2 - شماره پیاپی 20، بهمن 2023، صفحه 329-340 اصل مقاله (742.15 K) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2024.29819.1416 | ||
نویسندگان | ||
Hossein Ali Hoshyar* 1؛ Maryam Johari2؛ Davood Domiri Ganji3 | ||
1Department of Mechanical Engineering, Technical and Vocational University of Emam Sadegh, Babol, Iran | ||
2Department of Oral and Maxillofacial Radiology Babol, University of Medical Sciences, Babol, Iran | ||
3Department of Mechanical Engineering, Babol University of Technology, Babol, Iran | ||
تاریخ دریافت: 15 بهمن 1401، تاریخ بازنگری: 23 دی 1402، تاریخ پذیرش: 23 دی 1402 | ||
چکیده | ||
An analysis has been performed to study the problem of the thermal performance of a continuously moving convective-radiative rod with variable thermal conductivity. Highly accurate semi-analytical methods called the least Square method (LSM) and the Galerkin method (GM) are introduced and then used to obtain a nonlinear temperature distribution equation in a fin that allows for more accurate measurements that could make the investigation stand out. This research investigated the influence of various parameters on heat transfer in a continuously moving convective-radiative rod. The parameters examined include the convective-conductive factor (Ncc), dimensionless thermal conductivity coefficients (a), radiative-conductive parameter (Nrc), Peclet number (Pe), dimensionless convective (θc), and radiative sink temperatures (θr). An increase in the dimensionless thermal conductivity coefficient (a) led to higher dimensionless temperatures within the rod, indicating an amplification of conductive heat transfer. The convective-conductive parameter (Ncc) demonstrated a direct relationship with heat loss. In contrast, the radiative-conductive parameter (Nrc) exhibited an inverse relationship between radiative heat transfer and local temperature within the fin. A rise in the Peclet number was associated with higher dimensionless temperatures, indicating a faster-moving rod. Additionally, variations in dimensionless convective and radiative sink temperatures affected temperature profiles, with higher sink temperatures resulting in increased dimensionless temperatures. Notably, the dimensionless radiative sink temperature was found to have a more significant impact on overall dimensionless temperature than the convective sink temperature. These findings underscore the intricate interplay of factors governing heat transfer and temperature distribution in the moving rod system. The importance of this work lies in its comprehensive analysis of the intricate interplay of parameters affecting heat transfer and temperature distribution in continuously moving convective-radiative rods, providing valuable insights for optimizing industrial processes and engineering applications. | ||
کلیدواژهها | ||
Moving convective-radiative rod؛ Temperature-dependent thermal conductivity؛ Least square method (LSM)؛ Galerkin method (GM) | ||
مراجع | ||
[1] Kiwan, S. and Al-Nimr, M. A., 2001. Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123(4), pp.790-795.
[2] Kiwan, S. and Zeitoun, O., 2008. Natural convection in a horizontal cylindrical annulus using porous fins. International Journal of Numerical Methods for Heat & Fluid Flow. 18(5), pp.618-634.
[3] Nayfeh, A. H., 2008. Perturbation methods. John Wiley & Sons.
[4] Ganji, D. D., Kachapi, S. H. and Seyed, H., 2011. Analytical and numerical methods in engineering and applied sciences. Progress in Nonlinear Science, 3, pp.1-579.
[5] Ganji, D. D. and Kachapi, S. H., 2011. Analysis of nonlinear equations in fluids. Progress in Nonlinear Science, 2, pp.1-293.
[6] He, J. H., 2005. Homotopy perturbation method for bifurcation of nonlinear problems. International Journal of Nonlinear Sciences and Numerical Simulation, 6(2), pp. 207-208.
[7] Ganji, D. D., Abbasi, M., Rahimi, J., Gholami, M., Rahimipetroudi, I., 2014. On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM. Frontiers of Mechanical Engineering, 9, pp. 270-280.
[8] Abbasi, M., Ganji, D. D., Rahimipetroudi, I., Khaki, M., 2014. Comparative analysis of MHD boundary-layer flow of viscoelastic fluid in permeable channel with slip boundaries by using HAM, VIM, HPM. Walailak Journal of Science and Technology (WJST), 11(7), pp. 551-567.
[9] He, J. H., 2007. Variational iteration method—some recent results and new interpretations. Journal of computational and applied mathematics, 207(1), pp. 3-17.
[10] Petroudi, R. I., Ganji, D. D., Shotorban, B. A., Nejad, K. M., Rahimi, E., Rohollahtabar, R., Taherinia, F., 2012. Semi-analytical method for solving non-linear equation arising of natural convection porous fin. Thermal Science, 16(5), pp. 1303-1308.
[11] He, J. H., 1999. Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics, 34(4), pp.699-708.
[12] Vahabzadeh, A., Fakour, M., Ganji, D. D., Rahimipetroudi, I., 2014. Analytical accuracy of the one dimensional heat transfer in geometry with logarithmic various surfaces. Central European Journal of Engineering, 4, pp.341-351.
[13] Liao, S., 2004. On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), pp. 499-513.
[14] Petroudi, I. R., Ganji, D. D., Nejad, M. K., Rahimi, J., Rahimi, E., Rahimifar, A., 2014. Transverse magnetic field on Jeffery–Hamel problem with Cu–water nanofluid between two non parallel plane walls by using collocation method. Case Studies in Thermal Engineering, 4, pp.193-201.
[15] Hasankhani Gavabari, R., Abbasi, M., Ganji, D. D., Rahimipetroudi, I., Bozorgi, A., 2016. Application of Galerkin and Collocation method to the electrohydrodynamic flow analysis in a circular cylindrical conduit. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, pp. 2327-2332.
[16] Kumar, R. V., Sarris, I. E., Sowmya, G., Abdulrahman, A., 2023. Iterative Solutions for the Nonlinear Heat Transfer Equation of a Convective-Radiative Annular Fin with Power Law Temperature-Dependent Thermal Properties. Symmetry, 15(6), pp. 1204.
[17] Hoshyar, H.A., Rahimipetroudi, I., Ganji, D.D., Majidian, A.R., 2015. Thermal performance of porous fins with temperature-dependent heat generation via the homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 14(4), pp.53-65.
[18] Varun Kumar, R. S., Alsulami, M. D., Sarris, I. E., Prasannakumara, B. C., Rana, S., 2023. Backpropagated neural network modeling for the non-fourier thermal analysis of a moving plate. Mathematics, 11(2), pp. 438.
[19] Sowmya, G., Kumar, R. S. V. and Banu, Y., 2023. Thermal performance of a longitudinal fin under the influence of magnetic field using Sumudu transform method with pade approximant (STM‐PA). ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, pp. e202100526.
[20] Jayaprakash, M. C., Alzahrani, H. A., Sowmya, G., Kumar, R. V., Malik, M. Y., Alsaiari, A., Prasannakumara, B. C., 2021. Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering, 28, pp. 101697.
[21] Alhejaili, W., Kumar, R.V., El-Zahar, E.R., Sowmya, G., Prasannakumara, B.C., Khan, M.I., Yogeesha, K.M., Qayyum, S., 2022. Analytical solution for temperature equation of a fin problem with variable temperature-dependent thermal properties: Application of LSM and DTM-Pade approximant. Chemical Physics Letters, 793, pp.139409.
[22] Khan, N. A., Sulaiman, M. and Alshammari, F. S., 2022. Analysis of heat transmission in convective, radiative and moving rod with thermal conductivity using meta-heuristic-driven soft computing technique. Structural and Multidisciplinary Optimization, 65 (11), pp. 317.
[23] Sowmya, G., Sarris, I. E., Vishalakshi, C. S., Kumar, R. S. V., Prasannakumara, B. C., 2021. Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant. Symmetry, 13(10), pp. 1793.
[24] Sun, Y. S., Ma, J. and Li, B. W., 2015. Spectral collocation method for convective–radiative transfer of a moving rod with variable thermal conductivity. International Journal of Thermal Sciences, 90, pp. 187-196.
[25] Hatami, M., Hasanpour, A. and Ganji, D. D., 2013. Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Conversion and Management, 74, pp. 9-16.
[26] Ghasemi, S. E., Hatami, M., and Ganji, D. D., 2014. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Studies in Thermal Engineering, 4, pp. 1-8.
[27] Ghiaasiaan, S., 2010. Applied Gas Dynamics, Chapter 3 provides an overview of the Galerkin Method and its advantages and limitations in solving fluid dynamics problems. Cambridge University Press.
[28] Atkinson, K., 2018. An Introduction to Numerical Analysis, Chapter 8 discusses the Galerkin Method, highlighting its strengths, computational complexity, and convergence issues. CRC Press.
[29] Mukherjee, S., 2021. Numerical Methods in Engineering with Python, Chapter 9 provides an introduction to the Galerkin Method and the LSM, presenting their advantages and shortcomings, along with practical examples. CRC Press.
[30] Quarteroni, A., Saleri, F. and Gervasio, P., 2019. Scientific Computing with MATLAB and Octave, Chapter 7 discusses the Galerkin Method and the LSM, addressing their advantages, computational complexity, and convergence issues, with MATLAB and Octave code examples. Berlin: Springer.
[31] Hatami, M. and Ganji, D.D., 2013. Thermal performance of circular convective–radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76, pp. 185-193.
[32] Hatami, M., Ahangar, G. R. M., Ganji, D. D., Boubaker, K., 2014. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy conversion and management, 84, pp. 533-540.
[33] Shirkhani, M. R., Hoshyar, H. A., Rahimipetroudi, I., Akhavan, H., Ganji, D. D., 2018. Unsteady time-dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM). Propulsion and Power Research, 7(3), pp. 247-256.
[34] Hoshyar, H. A., Rahimipetroudi, I. and Ganji, D. D., 2019. Heat Transfer Performance on Longitudinal Porous Fins with Temperature-Dependent Heat Generation, Heat Transfer Coefficient and Surface Emissivity. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(2), pp. 383-391.
[35] Aziz, A., 2006. Heat conduction with maple. Philadelphia (PA): RT Edwards. | ||
آمار تعداد مشاهده مقاله: 253 تعداد دریافت فایل اصل مقاله: 238 |