
تعداد نشریات | 21 |
تعداد شمارهها | 620 |
تعداد مقالات | 9,100 |
تعداد مشاهده مقاله | 67,312,128 |
تعداد دریافت فایل اصل مقاله | 7,797,350 |
The Effect of Gap Fluctuations on Specific Heat of a Superconducting Nanograin | ||
Progress in Physics of Applied Materials | ||
مقاله 9، دوره 5، شماره 1 - شماره پیاپی 8، مرداد 2025، صفحه 61-66 اصل مقاله (537.45 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.36219.1125 | ||
نویسندگان | ||
Neda Ebrahimian* 1؛ Alireza Donyavi2 | ||
1Department of physics, Faculty of Basic Sciences, Shahed University | ||
2Department of Physics, Faculty of Basic Sciences, Shahed University | ||
تاریخ دریافت: 20 آذر 1403، تاریخ بازنگری: 13 دی 1403، تاریخ پذیرش: 02 بهمن 1403 | ||
چکیده | ||
Recently, the finite size effects, via superconducting nanograins, have attracted much attention from physicists. The effect of the small size can enter via the interaction matrix element and the spectral energy. We suppose that the mean level spacing near the Fermi energy is smaller than the bulk gap, allowing the BCS formalism to remain a valid approximation. For a nanograin, the gap function, in general, depends on the size of the system, and the Fermi energy. By entering the effect of the small size on the gap equation for a rectangular nanograin, specific heat in terms of temperature and length of a superconducting nanograin is obtained. Our results reveal that the spectral energy of the nanograin does not affect the change in the behavior of specific heat. However, the effect of the energy gap of nanograin strongly affects the behavior of specific heat. One of the interesting results is that at some fixed temperatures, the behaviour of specific heat shows a peak in a special length. Also, we compare specific heat in 2- and 3-dimensional cases. | ||
کلیدواژهها | ||
Superconductivity؛ Heat Capacity؛ Nano Grain؛ Order Parameter | ||
مراجع | ||
[1] Anderson, P.W., 1959. Theory of dirty superconductors. Journal of Physics and Chemistry of Solids, 11(1-2), pp.26-30.
[2] Black, C.T., Ralph, D.C. and Tinkham, M., 1996. Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Physical review letters, 76(4), p.688.
[3] Von Delft, J. and Ralph, D.C., 2001. Spectroscopy of discrete energy levels in ultrasmall metallic grains. Physics Reports, 345(2-3), pp.61-173.
[4] Richardson, R., Sherman, N., 1964. Pairing models of Pb206, Pb204 and Pb202. Nucl. Phys., 52, p. 253.
[5] Brack, M. and Bhaduri, R.K., 1997. Semiclassical Physics Addison.
[6] Balian, R. and Bloch, C., 1971. Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces. Annals of Physics, 64(1), pp.271-307.
[7] Parmenter, R.H., 1968. Size effect in a granular superconductor. Physical Review, 166(2), p.392.
[8] Blatt, J.M. and Thompson, C.J., 1963. Shape resonances in superconducting thin films. Physical Review Letters, 10(8), p.332.
[9] Mühlschlegel, B., Scalapino, D.J. and Denton, R., 1972. Thermodynamic properties of small superconducting particles. Physical Review B, 6(5), p.1767.
[10] Bardeen, J., Cooper, L.N. and Schrieffer, J.R., 1957. Theory of superconductivity. Physical review, 108(5), p.1175.
[11] Abeles, B., Cohen, R.W. and Cullen, G.W., 1966. Enhancement of superconductivity in metal films. Physical Review Letters, 17(12), p.632.
[12] Giaever, I. and Zeller, H.R., 1968. Superconductivity of small tin particles measured by tunneling. Physical Review Letters, 20(26), p.1504.
[13] Ohshima, K., Kuroishi, T. and Fujita, T., 1976. Superconducting transition temperature of aluminium fine particles. Journal of the Physical Society of Japan, 41(4), pp.1234-1236.
[14] Tsuboi, T. and Suzuki, T., 1977. Specific heat of superconducting fine particles of tin. I. Fluctuations in zero magnetic field. Journal of the Physical Society of Japan, 42(2), pp.437-444.
[15] Matsuo, S., Sugiura, H. and Noguchi, S., 1974. Superconducting transition temperature of aluminum, indium, and lead fine particles. Journal of Low Temperature Physics, 15, pp.481-490.
[16] Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., 1975. Structural and electrical properties of granular metal films. Advances in Physics, 24(3), pp.407-461.
[17] Shapira, Y. and Deutscher, G., 1983. Semiconductor-superconductor transition in granular Al-Ge. Physical Review B, 27(7), p.4463.
[18] Li, W.H., Yang, C.C., Tsao, F.C. and Lee, K.C., 2003. Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Physical Review B, 68(18), p.184507.
[19] Li, W.H., Yang, C.C., Tsao, F.C., Wu, S.Y., Huang, P.J., Chung, M.K. and Yao, Y.D., 2005. Enhancement of superconductivity by the small size effect in In nanoparticles. Physical Review B—Condensed Matter and Materials Physics, 72(21), p.214516.
[20] Bose, S., Raychaudhuri, P., Banerjee, R., Vasa, P. and Ayyub, P., 2005. Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Physical review letters, 95(14), p.147003.
[21] Li, W.H., Wang, C.W., Li, C.Y., Hsu, C.K., Yang, C.C. and Wu, C.M., 2008. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Physical Review B—Condensed Matter and Materials Physics, 77(9), p.094508.
[22] Bose, S., Galande, C., Chockalingam, S.P., Banerjee, R., Raychaudhuri, P. and Ayyub, P., 2009. Competing effects of surface phonon softening and quantum size effects on thesuperconducting properties of nanostructured Pb. Journal of Physics: Condensed Matter, 21(20), p.205702.
[23] Jin, Y., Song, X. and Zhang, D., 2009. Grain-size dependence of superconductivity in dc sputtered Nb films. Science in China Series G: Physics, Mechanics and Astronomy, 52(9), pp.1289-1292.
[24] Delacour, C., Ortega, L., Faucher, M., Crozes, T., Fournier, T., Pannetier, B. and Bouchiat, V., 2011. Persistence of superconductivity in niobium ultrathin films grown on R-plane sapphire. Physical Review B—Condensed Matter and Materials Physics, 83(14), p.144504.
[25] Reich, S., Leitus, G., Popovitz-Biro, R. and Schechter, M., 2003. Magnetization of small lead particles. Physical review letters, 91(14), p.147001.
[26] Kresin, V.Z. and Tavger, B.A., 1966. Superconducting transition temperature of a thin film. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (USSR) For English translation see Sov. Phys.-JETP (Engl. Transl.), 50.
[27] Brihuega, I., García-García, A.M., Ribeiro, P., Ugeda, M.M., Michaelis, C.H., Bose, S. and Kern, K., 2011. Experimental observation of thermal fluctuations in single superconducting Pb nanoparticles through tunneling measurements. Physical Review B—Condensed Matter and Materials Physics, 84(10), p.104525.
[28] Liu, J., Wu, X., Ming, F., Zhang, X., Wang, K., Wang, B. and Xiao, X., 2011. Size-dependent superconducting state of individual nanosized Pb islands grown on Si (111) by tunneling spectroscopy. Journal of Physics: Condensed Matter, 23(26), p.265007.
[29] Romero-Bermúdez, A. and Garcia-Garcia, A.M., 2014. Size effects in superconducting thin films coupled to a substrate. Physical Review B, 89(6), p.064508.
[30] Gordon, J.E., Tan, M.L., Fisher, R.A. and Phillips, N.E., 1989. Specific heat data of high-Tc superconductors: Lattice and electronic contributions. Solid state communications, 69(6), pp.625-629.
[31] Chou, C., White, D. and Johnston, H.L., 1958. Heat capacity in the normal and superconducting states and critical field of niobium. Physical Review, 109(3), p.788.
[32] Wen, H.H., 2020. Specific heat in superconductors. Chinese Physics B, 29(1), p.017401.
[33] Jiang, C., Zaccone, A., Setty, C. and Baggioli, M., 2023. Glassy heat capacity from overdamped phasons and hypothetical phason-induced superconductivity in incommensurate structures. Physical Review B, 108(5), p.054203.
[34] García-García, A.M., Urbina, J.D., Yuzbashyan, E.A., Richter, K. and Altshuler, B.L., 2011. BCS superconductivity in metallic nanograins: Finite-size corrections, low-energy excitations, and robustness of shell effects. Physical Review B—Condensed Matter and Materials Physics, 83(1), p.014510.
[35] De Gennes, P.G., 2018. Superconductivity of metals and alloys. CRC press.
[36] Ketterson, J.B. and Song, S.N., 1999. Superconductivity. Cambridge university press.
| ||
آمار تعداد مشاهده مقاله: 32 تعداد دریافت فایل اصل مقاله: 31 |