
تعداد نشریات | 21 |
تعداد شمارهها | 621 |
تعداد مقالات | 9,143 |
تعداد مشاهده مقاله | 67,448,974 |
تعداد دریافت فایل اصل مقاله | 7,979,020 |
A class of bi-univalent functions defined by (p, q)-derivative operator subordinate to (m, n)-Lucas polynomials | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 12 فروردین 1404 اصل مقاله (431.38 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34951.5218 | ||
نویسندگان | ||
S.R. Swamy* ؛ M. D. Mary؛ V. Ushakumari | ||
Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru- 560 107, Karnataka, India | ||
تاریخ دریافت: 14 تیر 1403، تاریخ پذیرش: 09 شهریور 1403 | ||
چکیده | ||
We propose a category of normalized analytic functions given by $g(\zeta)=\zeta+\sum\limits_{j=2}^{\infty}d_j\zeta^j$ that are bi-univalent in the unit disc defined by (p,q)-derivative operator, subordinate to (m,n)-Lucas polynomials. For members of this family, we determine estimates for the coefficients $|d_2|$ and $|d_3|$ and the Fekete-Szego result. New implications of the primary result, as well as pertinent links to previously published findings, are also provided. | ||
کلیدواژهها | ||
Bi-univalent function؛ (p, q)-derivative operator؛ (m, n)-Lucas polynomial؛ Fekete-Szego problem | ||
مراجع | ||
[1] A. Akgul, (p,q)-Lucas polynomial coefficient inequalities of the bi-univalent function class, Turk. J. Math. 43 (2019), 2170–2176. [2] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27 (2004), 1429–1436. [3] S. Altınkaya and S. Yalcın, Lucas polynomials and applications to an unified class of bi-univalent functions equipped with (p,q)-derivative operators, TWMS J. Pure Appl. Math. 11 (2020), no. 1, 100–108. [4] S. Altınkaya and S. Yalcın, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class, Bol. Soc. Mat. Mex. 25 (2019), no. 3, 567–575. [5] S. Altınkaya and S. Yalcın, Certain classes of bi-univalent functions of complex order associated with quasisubordination involving (p, q)- derivative operator, Kragujevac J. Math. 44 (2020), no. 4, 639—649. [6] S. Araci, U. Duran, M. Acikgoz, and H.M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl. 301 (2016), 1–8. [7] M. Arik, Demircan, T. Turgut, L. Ekinci, and M. Mungan, Fibonacci oscillators, Z. Phys. CParticles Fields 55 (1992), 89–95. [8] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Proc. Int. Conf. Math. Anal. Appl., Kuwait, 1985, Math. Anal. Appl., 1988, pp. 53–60. [9] D.A. Brannan and J.G. Clunie, Aspects of contemporary complex analysis, Proc. NATO Adv. Study Inst. University of Durhary, Newyork, Academic Press, 1979. [10] G. Brodimas, A. Jannussis, and R. Mignani, Two-Parameter Quantum Groups, Dipartimento di Fisica Univer[1]sit di Roma ”La Sapienza” I.N.F.N.-Sezione di Roma, 1991. [11] J.D. Bukweli-Kyemba and M.N. Hounkonnou, Quantum deformed algebras: Coherent states and special functions, arXiv preprint arXiv:1301.01162013. [12] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C R Acad. Sci. Paris Ser I. 352 (2014), 479–484. [13] M. Caglar, E. Deniz, and H.M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math. 41 (2017), 694–706. [14] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proc. Int. Symp. Geom. Function Theory Appl., August, 20-24, 2007, TC Istanbul Kultur Univ., Turkey, 2007, pp. 241–250. [15] R. Chakrabarti and R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum, J. Phys. A: Math. Gen. 24 (1991), no. 13, L711. [16] L.-I. Cotırla, New classes of analytic and bi-univalent functions, AIMS Mathematics, 6(10) (2021) 10642–10651. [17] U. Duran, M. Acikgoz, and S. Araci, A study on some new results arising from (p, q)-calculus, TWMS J. Pure Appl. Math. 11 (2020), no. 1, 57–71. [18] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag, New York, 1983. [19] M. Fekete and G. Szego, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 89 (1933) 85–89. [20] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. 24 (2011), 1569–1573. [21] F.H. Jackson, On q-functions and a certain difference operator, Earth Envir. Sci. Trans. Royal Soc. Edinburgh 46 (1909), no. 2, 253–281. [22] R. Jagannathan and K.S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, Proc. Int. Conf. Number Theory Math. Phys., Srinivasa Ramanujan Centre, Kumbakonam, India, 20-21 December, 2005. [23] G. Lee and M. Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math. 2012 (2012), 1–18. [24] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. [25] N. Magesh, C. Abirami, and S. Altınkaya, Initial bounds for certain classes of bi-univalent functions defined by the (p,q)-Lucas polynomials, TWMS J. App. and Eng. Math. 11 (2021), no. 1, 282–288. [26] D. Malyalı, (p,q)-Hahn difference operator, MSc. Thesis, Eastern Mediterranean University, 2020. [27] SK. Mohapatra and T. Panigrahi, Coefficient estimates for bi-univalent functions defined by (P, Q) analogue of the Salagean differential operator related to the Chebyshev polynomials, J. Math. Fund. Sci. 53 (2021), no. 1, 49–66. [28] A. Motamednezhad and S. Salehian, New sublasses of Bi-univalent functions by (p; q)-derivative operator, Honam Math. J. 41 (2019), no. 2, 381–390. [29] G. Murugusundaramoorthy and S. Yalcın, On λ-pseudo bi-starlike functions related (p,q)-Lucas polynomials, Libertas Math. 39 (2019), no. 2, 79–88. [30] P.N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, arXiv preprint 1309.3934v1, 22 August 2013. [31] C. Selvaraj, G. Thirupathi, and E. Umadevi, Certain classes of analytic functions involving a family of generalized differential operators, Transyl. J. Math. Mech. 9 (2017), no. 1, 51–61. [32] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. [33] H.M. Srivastava, N. Raza, E.S.A. AbuJarad, G. Srivastava, and M.H. AbuJarad, Fekete-Szeg¨o inequality for classes of (p, q)-Starlike and (p, q)-convex functions, Rev. Real Acad. Cien. Exactas, F´ıs. Natur. Serie A, Mat. 113 (2019), no. 4, 3563–3584. [34] S.R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum 7 (2012), no. 36, 1751–1760. [35] S.R. Swamy, Inclusion properties for certain subclasses of analytic functions defined by a generalized multiplier transformation, Int. J. Math. Anal. 6 (2012), no. 32, 1553–1564. [36] S.R. Swamy, P.K. Mamatha, N. Magesh, and J. Yamini, Certain subclasses of bi-univalent functions defined by Salagean operator associated with the (p, q)- Lucas polynomials, Adv. Math.: Sci. J. 9 (2020), no. 8, 6017–6025. [37] S.R. Swamy, J. Nirmala, and Y. Sailaja, Some special families of holomorphic and Al-Oboudi type bi-univalent functions associated with (m,n)-Lucas polynomials involving modified sigmoid function, Asian J. Math. Math. Sci. 17 (2021), no. 1, 1–16. [38] S.R. Swamy and A.K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Bol. Soc. Mat. Mex. 28 (2022), no. 2, 34. [39] S.R. Swamy, A.K. Wanas, and Y. Sailaja, Some special families of holomorphic and S˘al˘agean type bi-univalent functions associated with (m, n)-Lucas polynomials, Commun. Math. Appl. 11 (2020), no. 4, 563–574. [40] D.L. Tan, Coefficient estimates for bi-univalent functions, Chin. Ann. Math. Ser. A. 5 (1984), 559–568. [41] A. Tuncer, A. Ali, and M. Syed Abdul, On Kantorovich modification of (p, q)-Baskakov operators, J. Inequal. Appl. 98 (2016), 1–8. [42] S.P. Vijayalakshmi, T.V. Sudharsan, and T. Bulboac, Symmetric Toeplitz determinants for classes defined by post quantum operators subordinated to the limacon function, Stud. Univ. Babes-Bolyai Math. 69 (2024), no. 2, 299—316. [43] M. Wachs and D. White, (p,q)-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991), no. 1, 27–46. | ||
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 60 |