
تعداد نشریات | 21 |
تعداد شمارهها | 621 |
تعداد مقالات | 9,143 |
تعداد مشاهده مقاله | 67,449,001 |
تعداد دریافت فایل اصل مقاله | 7,979,093 |
Principally π-Baer rings | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 20 فروردین 1404 اصل مقاله (438.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34744.5196 | ||
نویسندگان | ||
Somayeh Moradi1؛ Hamid Haj Seyyed Javadi* 1؛ Ahmad Moussavi2 | ||
1Department of Mathematics and Computer Science, Shahed University, Tehran, Iran | ||
2Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran | ||
تاریخ دریافت: 24 تیر 1403، تاریخ پذیرش: 12 آذر 1403 | ||
چکیده | ||
We say a ring is right principally $\pi$-Baer (or simply right $p.\pi$-Baer) if an idempotent generates the right annihilator of every projection invariant principal left ideal. The class of right $p.\pi$-Baer rings includes the von Neumann regular rings (and hence right p.p-rings) and all $\pi$-Baer rings. This class of rings is closed under direct products. The behavior of the right $p.\pi$-Baer condition is investigated concerning various constructions and extensions. Moreover, we extend a theorem of Kist for commutative p.p-rings to right $p.\pi$-Baer rings for which every prime ideal contains a unique minimal prime ideal without using topological arguments. | ||
کلیدواژهها | ||
p.p ring؛ Baer ring؛ quasi-Baer ring؛ principally quasi-Baer ring؛ π-Baer ring؛ p.π-Baer ring؛ semicentral idempotent | ||
مراجع | ||
[1] H.E. Bell, Near rings in wich each element is a power of itself, Bull. Aust. Math. Soc. 2 (1973), no. 2, 363–368. [2] G.F. Birkenmeier, Y. Kara, and A. Tercan, π-Baer rings, J. Alg. Appl. 16 (2018), no. 11, 1–19. [3] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, A characterization of minimal prime ideals, Glasgow Math. J. 40 (1998), 223–236. [4] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, A sheaf representation of quasi-Baer rings, J. Pure Appl. Alg. 146 (2000), 209–223. [5] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–253. [6] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, Prime ideals of principally quasi-Baer rings, Acta Math. Hung. 98 (2003), no. 3, 217–225. [7] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, Principally quasi-Baer rings, Commun. Alg. 29 (2001), no. 2, 639–660. [8] G.F. Birkenmeier, A. Tercann, and C.C. Yucel, Projection invariant extending rings, J. Alg. Appl. 15 (2016), no. 6, 1650121, 11 pp. [9] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1997), 417–424. [10] H.E. Heathely and R.P. Tucci, Central and semicentral idempotents, Kyungpook Math. J. 40 (2000), 255–258. [11] C. Huh, H.K. Kim, and Y. Lee, p.p rings and generalized p.p rings, J. Pure Appl. Alg. 167 (2002), 37–52. [12] I. Kaplanski, Rings of Operators, Benjamin, New York. 1968. [13] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Springer, New York, 2000. [14] A. Majidinya and A. Moussavi, Weakly principally quasi-Baer rings, J. Alg. Appl. 15 (2016), no. 1, 1–19. [15] A. Moussavi, H. Haj Seyyed Javadi, and E. Hashemi, Generalized quasi-Baer rings, Commun. Alg. 33 (2005), 2115–2129. [16] A. Shahidikia, H. Haj Seyyed Javadi, and A. Moussavi, Generalized π-Baer rings, Turk. J. Math. 44 (2020), 2021–2040. | ||
آمار تعداد مشاهده مقاله: 23 تعداد دریافت فایل اصل مقاله: 34 |