
تعداد نشریات | 21 |
تعداد شمارهها | 628 |
تعداد مقالات | 9,204 |
تعداد مشاهده مقاله | 67,563,111 |
تعداد دریافت فایل اصل مقاله | 8,094,431 |
Reproducing kernel method to solve a class of variable delay integro-differential equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 اردیبهشت 1404 اصل مقاله (990 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24718.2806 | ||
نویسندگان | ||
Tofigh Allahviranloo* 1؛ Saeid Abbasbandy2؛ Hussein Sahihi1 | ||
1Research Center of Performance and Productivity Analysis, Istinye University, Istanbul, Turkey | ||
2Department of Applied Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran | ||
تاریخ دریافت: 08 مهر 1400، تاریخ بازنگری: 12 دی 1400، تاریخ پذیرش: 18 دی 1400 | ||
چکیده | ||
This paper deals with an efficient method to solve Variable Delay Integro-Differential Equations (VDIDEs). We use a different implementation of the general form of the Reproducing Kernel Method (RKM). We seek to apply RKM without using the orthogonalization process. The main purpose of this technique for the VDIDE is to implement it in large intervals so that an appropriate approximate solution can be obtained and also a valid error analysis can be provided. This method significantly increases the accuracy of approximate solutions in small intervals. The accuracy of theoretical results is also illustrated by solving two numerical examples. | ||
کلیدواژهها | ||
Integro-Differential Equations؛ Delay differential equation؛ Initial value problem؛ Reproducing kernel method؛ Error analysis | ||
مراجع | ||
[1] S. Abbasbandy, H. Sahihi, and T. Allahviranloo, Implementing reproducing kernel method to solve singularly perturbed convection-diffusion parabolic problems, Math. Model. Anal. 26 (2021), 116–134. [2] M.S. Abdo and S.K. Panchal, Initial value problem for a fractional neutral differential equation with infinite delay, Int. J. Nonlinear Anal. App. 12 (2021), 1195–1206. [3] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve parabolic partial differential equations with nonlocal conditions, Nume. Method. Parti. Diffe. Equ. 36 (2020), 1758–1772. [4] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional delay differential equations, Appl. Math. Comput. 400 (2021), 126095. [5] N. Aronszajn, Theory of reproducing kernel, Trans. Amer. Math. Soc. 68 (1950), 337–404. [6] A. Ayad, The numerical solution of first order delay integro-differential equations by spline functions, Int. J. Comput. Math. 77 (2007), 125–134. [7] E. Babolian, S. Javadi, and E. Moradi, Error analysis of reproducing kernel Hilbert space method for solving functional integral equations, J. Comput. Appl. Math. 300 (2016), 300–311. [8] A. Bellour, M. Bousselsal, and H. Laib, Numerical solution of second-order linear delay differential and integro-differential equations by using Taylor collocation method, Int. J. Comput. Meth. 17 (2020), 1950070-31. [9] A. Bellour and M. Bousselsal, Numerical solution of delay integro-differential equations by using Taylor collocation method, Math. Meth. Appl. Sci. 37 (2014), 1491–1506. [10] L. Berezansky, J. Dibl´ık, Z. Svoboda, and Z. Smarda, Uniform exponential stability of linear delayed integro-differential vector equations, J. Diff. Equ. 270 (2021), 573–595. [11] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science, Hauppauge, New York, United States, 2009. [12] W.H. Enright and M. Hu, Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay, Appl. Num. Math. 24 (1997), 175–190. [13] S.Q. Hasan, M.A. Rasheed, and T.J. Aldhlki, Uniform stability of integro-differential inequalities with nonlinear control inputs and delay, Int. J. Nonlinear Anal. App. 13 (2022), 421–430. [14] R. Ketabchi, R. Mokhtari, and E. Babolian, Some error estimates for solving Volterra integral equations by using the reproducing kernel method, J. Comput. Appl. Math. 273 (2015), 245–250. [15] F.A. Khasawneh and B.P. Mann, Stability of delay integro-differential equations using a spectral element method, Math. Comput. Model 54 (2011), 2493–2503. [16] I.-G.E. Kordonis and Ch.G. Philos, The behavior of solutions of linear integro-differential equations with un[1]bounded delay, Comput. Math. Appl. 38 (1999), 45–50. [17] T. Koto, Stability of Runge–Kutta methods for delay integro-differential equations, J. Comput. Appl. Math. 145 (2002), 483–492. [18] K. Kucche and P. Shikhare, Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations, Int. J. Nonlinear Anal. App. 9 (2018), 145–159. [19] V. Lakshmikantham and M.R. Mahana Rao, Theory of Integro-Differential Equations (Stability and Control: Theory, Methods and Applications; Vol. 1), Gordon and Breach Science Publishers, Amsterdam, 1995. [20] J. Liang and T. Xiao, Solvability of the Cauchy problem for infinite delay equations, Nonlinear Anal. 58 (2004), 271–297. [21] S.M. Mirhosseini Alizamini, A novel scheme for solving multi-delay fractional optimal control problems, Int. J. Nonlinear Anal. App. 13 (2022), 2095–2113. [22] P. Nasertayoob and S.M. Vaezpour, Periodic solution for a delay nonlinear population equation with feedback control and periodic external source, Int. J. Nonlinear Anal. App. 6 (2015), 53–61. [23] H. Sahihi, S. Abbasbandy, and T. Allahviranloo, Reproducing kernel method for solving singularly perturbed differential-difference equations with boundary layer behavior in Hilbert space, J. Comput. Appl. Math. 328 (2018), 30–43. [24] H. Sahihi, S. Abbasbandy, and T. Allahviranloo, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput. 361 (2019), 583–598. [25] H. Sahihi, T. Allahviranloo, and S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Num. Math. 151 (2020), 27–39. [26] X. Shi and Y. Chen, Spectral-collocation method for Volterra delay integro-differential equations with weakly singular kernels, Adv. Appl. Math. Mech. 8 (2016), 648–669. [27] Y. Wang, T. Chaolu, and Z. Chen, Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems, Int. J. Comput. Mathe. 87 (2010), 367–380. [28] Y. Wang, T. Chaolu, and P. Jing, New algorithm for second-order boundary value problems of integro-differential equation, J. Comput. Appl. Math. 229 (2009), 1–6. [29] W. Wang, Nonlinear stability of one-leg methods for neutral delay-integro-differential Volterra equations, Math. Comput. Simul. 97 (2014), 147–161. [30] L. Wen, S. Wang, and Y. Yu, Dissipativity of Runge–Kutta methods for neutral delay integro–differential equations, Appl. Math. Comput. 215 (2009), 583–590. [31] L. Wen and Y. Yu, Convergence of Runge–Kutta methods for neutral delay integro-differential equations, Appl. Math. Comput. 282 (2016), 84–96. [32] L. Wen and Y. Zhou, Convergence of one-leg methods for neutral delay integro-differential equations, J. Comput. Appl. Math. 317 (2017), 432–446. [33] C. Zhang and Y. Niu, The stability relation between ordinary and delay-integro-differential equations, Math. Comput. Model. 49 (2009), 13–19. [34] C. Zhang and S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization, J. Comput. Appl. Math. 164-165 (2004), 797–814. | ||
آمار تعداد مشاهده مقاله: 17 تعداد دریافت فایل اصل مقاله: 38 |