تعداد نشریات | 21 |
تعداد شمارهها | 587 |
تعداد مقالات | 8,746 |
تعداد مشاهده مقاله | 66,614,552 |
تعداد دریافت فایل اصل مقاله | 7,178,355 |
Deep inference: A convolutional neural networks method for parameter recovery of the fractional dynamics | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 16، دوره 12، شماره 1، مرداد 2021، صفحه 189-201 اصل مقاله (1.83 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4757 | ||
نویسندگان | ||
Nader Biranvand* 1؛ Amir Hossein Hadian-Rasanan2؛ Ali Khalili3؛ Jamal Amani Rad2 | ||
1Faculty of Sciences, Imam Ali University, Tehran, Iran | ||
2Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran | ||
3Faculty of Engineering, Imam Ali University, Tehran Iran | ||
تاریخ دریافت: 21 اردیبهشت 1399، تاریخ بازنگری: 01 دی 1399، تاریخ پذیرش: 06 دی 1399 | ||
چکیده | ||
Parameter recovery of dynamical systems has attracted much attention in recent years. The proposed methods for this purpose can not be used in real-time applications. Besides, little works have been done on the parameter recovery of the fractional dynamics. Therefore, in this paper, a convolutional neural network is proposed for parameter recovery of the fractional dynamics. The presented network can also estimate the uncertainty of the parameter estimation and has perfect robustness for real-time applications. | ||
کلیدواژهها | ||
Convolutional neural network؛ Parameter estimation؛ Fractional Dynamics؛ Data driven discove | ||
مراجع | ||
[1] D. Baleanu and A. Mendes Lopes, Handbook of Fractional Calculus with Applications, De Gruyter, 2019.
[2] V.V. Kulish and J.L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng. 124(3) (2002) 803–806.
[3] N. Hassan Sweilam, S. Mahyoub Al-Mekhlafi, T. Assiri, and A. Atangana, Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative, Adv. Differ. Equ. 2020(1) (2020)1–21.
[4] B. Ni and H. Gao, A deep learning approach to the inverse problem of modulus identification in elasticity, MRS Bull. 46 (2021) 19-25.
[5] M. Ridha Znaidi, G. Gupta, K. Asgari, and P. Bogdan, Identifying arguments of space-time fractional diffusion: data-driven approach, Front. Appl. Math. Stat. 6 (2020) 14.
[6] F. Liu and K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl. 62(3) (2011) 822–833.
[7] Sh. Chen, F. Liu, X. Jiang, I. Turner, and K. Burrage, Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients, SIAM J. Numer. Anal. 54(2) (2016) 606–624.
[8] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys. 348 (2017) 683–693.
[9] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput. 40(1) (2018) A172–A198.
[10] Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019)108925.
[11] M. Raissi, P. Perdikaris, and G. E Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707.
[12] G. Pang, L. Lu, and G. E. Karniadakis, PINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput. 41(4) (2019) A2603–A2626.
[13] H. Xu, H. Chang, and D. Zhang, DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm, J. Comput. Phys. 418 (2020): 109584.
[14] A.H. Hadian-Rasanan, D. Rahmati, S. Gorgin, and K. Parand, A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation, New Astronomy 75 (2020) 101307.
[15] A.H. Hadian Rasanan, N. Bajalan, K. Parand, and J. Amani Rad, Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network, Math. Meth. Appl. Sci. 43(3) (2020) 1437–1466.
[16] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B Rubin, Bayesian Data Analysis. CRC Press, 2013.
[17] B.M. Turner and T. Van Zandt, A tutorial on approximate Bayesian computation, J. Math. Psycho. 56(2) (2012) 69–85.
[18] D.B. Rubin, Bayesianly justifiable and relevant frequency calculations for the applied statistician, Ann. Statistics 12(4) (1984) 1151–1172.
[19] S.T. Radev, U.K. Mertens, A. Voss, and U. Kothe, Towards end-to-end likelihood-free inference with convolutional neural networks, Br. J. Math. Statistic. Psycho. 73(1) (2020) 23–43.
[20] K. Diethelm, N.J. Ford, and A.D. Freed, Detailed error analysis for a fractional Adams method, Numerical Algorithms 36(1) (2004) 31–52.
[21] M. Abbaszadeh and M. Dehghan, Fourth-order alternating direction implicit difference scheme to simulate the space-time Riesz tempered fractional diffusion equation, Int. J. Comput. Math. 98(11) (2021) 2137-2155
[22] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59(3) (2010)1326–1336.
[23] M. Abbaszadeh and H. Amjadian, Second-order finite difference/spectral element formulation for solving the fractional advection-diffusion equation, Commun.Appl. Math. Comput. 2 (2020) 653-669.
[24] M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Sci. 22(2018) 185–194.
[25] J. Eshaghi, H. Adibi, and S. Kazem, On a numerical investigation of the time fractional Fokker–Planck equation via local discontinuous Galerkin method, Int. J. Comput. Math. 94(9) (2017) 1916–1942.
[26] S. Kazem and M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Engin. Comput. 35(1) (2019) 229–241. | ||
آمار تعداد مشاهده مقاله: 15,673 تعداد دریافت فایل اصل مقاله: 896 |